This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| Assertion | wemapso | |- ( ( R We A /\ S Or B ) -> T Or ( B ^m A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 2 | ssid | |- ( B ^m A ) C_ ( B ^m A ) |
|
| 3 | weso | |- ( R We A -> R Or A ) |
|
| 4 | 3 | adantr | |- ( ( R We A /\ S Or B ) -> R Or A ) |
| 5 | simpr | |- ( ( R We A /\ S Or B ) -> S Or B ) |
|
| 6 | vex | |- a e. _V |
|
| 7 | 6 | difexi | |- ( a \ b ) e. _V |
| 8 | 7 | dmex | |- dom ( a \ b ) e. _V |
| 9 | 8 | a1i | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) e. _V ) |
| 10 | wefr | |- ( R We A -> R Fr A ) |
|
| 11 | 10 | ad2antrr | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> R Fr A ) |
| 12 | difss | |- ( a \ b ) C_ a |
|
| 13 | dmss | |- ( ( a \ b ) C_ a -> dom ( a \ b ) C_ dom a ) |
|
| 14 | 12 13 | ax-mp | |- dom ( a \ b ) C_ dom a |
| 15 | simprll | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) |
|
| 16 | elmapi | |- ( a e. ( B ^m A ) -> a : A --> B ) |
|
| 17 | 15 16 | syl | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a : A --> B ) |
| 18 | 14 17 | fssdm | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) C_ A ) |
| 19 | simprr | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a =/= b ) |
|
| 20 | 17 | ffnd | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a Fn A ) |
| 21 | simprlr | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) |
|
| 22 | elmapi | |- ( b e. ( B ^m A ) -> b : A --> B ) |
|
| 23 | 21 22 | syl | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b : A --> B ) |
| 24 | 23 | ffnd | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b Fn A ) |
| 25 | fndmdifeq0 | |- ( ( a Fn A /\ b Fn A ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
|
| 26 | 20 24 25 | syl2anc | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) |
| 27 | 26 | necon3bid | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> ( dom ( a \ b ) =/= (/) <-> a =/= b ) ) |
| 28 | 19 27 | mpbird | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) =/= (/) ) |
| 29 | fri | |- ( ( ( dom ( a \ b ) e. _V /\ R Fr A ) /\ ( dom ( a \ b ) C_ A /\ dom ( a \ b ) =/= (/) ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
|
| 30 | 9 11 18 28 29 | syl22anc | |- ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
| 31 | 1 2 4 5 30 | wemapsolem | |- ( ( R We A /\ S Or B ) -> T Or ( B ^m A ) ) |