This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| Assertion | wemaplem1 | |- ( ( P e. V /\ Q e. W ) -> ( P T Q <-> E. a e. A ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 2 | fveq1 | |- ( x = P -> ( x ` z ) = ( P ` z ) ) |
|
| 3 | fveq1 | |- ( y = Q -> ( y ` z ) = ( Q ` z ) ) |
|
| 4 | 2 3 | breqan12d | |- ( ( x = P /\ y = Q ) -> ( ( x ` z ) S ( y ` z ) <-> ( P ` z ) S ( Q ` z ) ) ) |
| 5 | fveq1 | |- ( x = P -> ( x ` w ) = ( P ` w ) ) |
|
| 6 | fveq1 | |- ( y = Q -> ( y ` w ) = ( Q ` w ) ) |
|
| 7 | 5 6 | eqeqan12d | |- ( ( x = P /\ y = Q ) -> ( ( x ` w ) = ( y ` w ) <-> ( P ` w ) = ( Q ` w ) ) ) |
| 8 | 7 | imbi2d | |- ( ( x = P /\ y = Q ) -> ( ( w R z -> ( x ` w ) = ( y ` w ) ) <-> ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) |
| 9 | 8 | ralbidv | |- ( ( x = P /\ y = Q ) -> ( A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) <-> A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) |
| 10 | 4 9 | anbi12d | |- ( ( x = P /\ y = Q ) -> ( ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) ) |
| 11 | 10 | rexbidv | |- ( ( x = P /\ y = Q ) -> ( E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. A ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) ) |
| 12 | fveq2 | |- ( z = a -> ( P ` z ) = ( P ` a ) ) |
|
| 13 | fveq2 | |- ( z = a -> ( Q ` z ) = ( Q ` a ) ) |
|
| 14 | 12 13 | breq12d | |- ( z = a -> ( ( P ` z ) S ( Q ` z ) <-> ( P ` a ) S ( Q ` a ) ) ) |
| 15 | breq2 | |- ( z = a -> ( w R z <-> w R a ) ) |
|
| 16 | 15 | imbi1d | |- ( z = a -> ( ( w R z -> ( P ` w ) = ( Q ` w ) ) <-> ( w R a -> ( P ` w ) = ( Q ` w ) ) ) ) |
| 17 | 16 | ralbidv | |- ( z = a -> ( A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) <-> A. w e. A ( w R a -> ( P ` w ) = ( Q ` w ) ) ) ) |
| 18 | breq1 | |- ( w = b -> ( w R a <-> b R a ) ) |
|
| 19 | fveq2 | |- ( w = b -> ( P ` w ) = ( P ` b ) ) |
|
| 20 | fveq2 | |- ( w = b -> ( Q ` w ) = ( Q ` b ) ) |
|
| 21 | 19 20 | eqeq12d | |- ( w = b -> ( ( P ` w ) = ( Q ` w ) <-> ( P ` b ) = ( Q ` b ) ) ) |
| 22 | 18 21 | imbi12d | |- ( w = b -> ( ( w R a -> ( P ` w ) = ( Q ` w ) ) <-> ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) |
| 23 | 22 | cbvralvw | |- ( A. w e. A ( w R a -> ( P ` w ) = ( Q ` w ) ) <-> A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) |
| 24 | 17 23 | bitrdi | |- ( z = a -> ( A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) <-> A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) |
| 25 | 14 24 | anbi12d | |- ( z = a -> ( ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) <-> ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) ) |
| 26 | 25 | cbvrexvw | |- ( E. z e. A ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) <-> E. a e. A ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) |
| 27 | 11 26 | bitrdi | |- ( ( x = P /\ y = Q ) -> ( E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> E. a e. A ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) ) |
| 28 | 27 1 | brabga | |- ( ( P e. V /\ Q e. W ) -> ( P T Q <-> E. a e. A ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) ) |