This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial order has no 2-cycle loops. (Contributed by NM, 27-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | po2nr | |- ( ( R Po A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr | |- ( ( R Po A /\ B e. A ) -> -. B R B ) |
|
| 2 | 1 | adantrr | |- ( ( R Po A /\ ( B e. A /\ C e. A ) ) -> -. B R B ) |
| 3 | potr | |- ( ( R Po A /\ ( B e. A /\ C e. A /\ B e. A ) ) -> ( ( B R C /\ C R B ) -> B R B ) ) |
|
| 4 | 3 | 3exp2 | |- ( R Po A -> ( B e. A -> ( C e. A -> ( B e. A -> ( ( B R C /\ C R B ) -> B R B ) ) ) ) ) |
| 5 | 4 | com34 | |- ( R Po A -> ( B e. A -> ( B e. A -> ( C e. A -> ( ( B R C /\ C R B ) -> B R B ) ) ) ) ) |
| 6 | 5 | pm2.43d | |- ( R Po A -> ( B e. A -> ( C e. A -> ( ( B R C /\ C R B ) -> B R B ) ) ) ) |
| 7 | 6 | imp32 | |- ( ( R Po A /\ ( B e. A /\ C e. A ) ) -> ( ( B R C /\ C R B ) -> B R B ) ) |
| 8 | 2 7 | mtod | |- ( ( R Po A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |