This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soltmin | |- ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A R if ( B R C , B , C ) <-> ( A R B /\ A R C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo | |- ( R Or X -> R Po X ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> R Po X ) |
| 3 | simplr1 | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> A e. X ) |
|
| 4 | simplr2 | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> B e. X ) |
|
| 5 | simplr3 | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> C e. X ) |
|
| 6 | 4 5 | ifcld | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> if ( B R C , B , C ) e. X ) |
| 7 | 3 6 4 | 3jca | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> ( A e. X /\ if ( B R C , B , C ) e. X /\ B e. X ) ) |
| 8 | simpr | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> A R if ( B R C , B , C ) ) |
|
| 9 | simpll | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> R Or X ) |
|
| 10 | somin1 | |- ( ( R Or X /\ ( B e. X /\ C e. X ) ) -> if ( B R C , B , C ) ( R u. _I ) B ) |
|
| 11 | 9 4 5 10 | syl12anc | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> if ( B R C , B , C ) ( R u. _I ) B ) |
| 12 | poltletr | |- ( ( R Po X /\ ( A e. X /\ if ( B R C , B , C ) e. X /\ B e. X ) ) -> ( ( A R if ( B R C , B , C ) /\ if ( B R C , B , C ) ( R u. _I ) B ) -> A R B ) ) |
|
| 13 | 12 | imp | |- ( ( ( R Po X /\ ( A e. X /\ if ( B R C , B , C ) e. X /\ B e. X ) ) /\ ( A R if ( B R C , B , C ) /\ if ( B R C , B , C ) ( R u. _I ) B ) ) -> A R B ) |
| 14 | 2 7 8 11 13 | syl22anc | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> A R B ) |
| 15 | 3 6 5 | 3jca | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> ( A e. X /\ if ( B R C , B , C ) e. X /\ C e. X ) ) |
| 16 | somin2 | |- ( ( R Or X /\ ( B e. X /\ C e. X ) ) -> if ( B R C , B , C ) ( R u. _I ) C ) |
|
| 17 | 9 4 5 16 | syl12anc | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> if ( B R C , B , C ) ( R u. _I ) C ) |
| 18 | poltletr | |- ( ( R Po X /\ ( A e. X /\ if ( B R C , B , C ) e. X /\ C e. X ) ) -> ( ( A R if ( B R C , B , C ) /\ if ( B R C , B , C ) ( R u. _I ) C ) -> A R C ) ) |
|
| 19 | 18 | imp | |- ( ( ( R Po X /\ ( A e. X /\ if ( B R C , B , C ) e. X /\ C e. X ) ) /\ ( A R if ( B R C , B , C ) /\ if ( B R C , B , C ) ( R u. _I ) C ) ) -> A R C ) |
| 20 | 2 15 8 17 19 | syl22anc | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> A R C ) |
| 21 | 14 20 | jca | |- ( ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A R if ( B R C , B , C ) ) -> ( A R B /\ A R C ) ) |
| 22 | 21 | ex | |- ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A R if ( B R C , B , C ) -> ( A R B /\ A R C ) ) ) |
| 23 | breq2 | |- ( B = if ( B R C , B , C ) -> ( A R B <-> A R if ( B R C , B , C ) ) ) |
|
| 24 | breq2 | |- ( C = if ( B R C , B , C ) -> ( A R C <-> A R if ( B R C , B , C ) ) ) |
|
| 25 | 23 24 | ifboth | |- ( ( A R B /\ A R C ) -> A R if ( B R C , B , C ) ) |
| 26 | 22 25 | impbid1 | |- ( ( R Or X /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A R if ( B R C , B , C ) <-> ( A R B /\ A R C ) ) ) |