This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| wemaplem2.p | |- ( ph -> P e. ( B ^m A ) ) |
||
| wemaplem2.x | |- ( ph -> X e. ( B ^m A ) ) |
||
| wemaplem2.q | |- ( ph -> Q e. ( B ^m A ) ) |
||
| wemaplem2.r | |- ( ph -> R Or A ) |
||
| wemaplem2.s | |- ( ph -> S Po B ) |
||
| wemaplem3.px | |- ( ph -> P T X ) |
||
| wemaplem3.xq | |- ( ph -> X T Q ) |
||
| Assertion | wemaplem3 | |- ( ph -> P T Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 2 | wemaplem2.p | |- ( ph -> P e. ( B ^m A ) ) |
|
| 3 | wemaplem2.x | |- ( ph -> X e. ( B ^m A ) ) |
|
| 4 | wemaplem2.q | |- ( ph -> Q e. ( B ^m A ) ) |
|
| 5 | wemaplem2.r | |- ( ph -> R Or A ) |
|
| 6 | wemaplem2.s | |- ( ph -> S Po B ) |
|
| 7 | wemaplem3.px | |- ( ph -> P T X ) |
|
| 8 | wemaplem3.xq | |- ( ph -> X T Q ) |
|
| 9 | 1 | wemaplem1 | |- ( ( P e. ( B ^m A ) /\ X e. ( B ^m A ) ) -> ( P T X <-> E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) |
| 10 | 2 3 9 | syl2anc | |- ( ph -> ( P T X <-> E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) |
| 11 | 7 10 | mpbid | |- ( ph -> E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) |
| 12 | 1 | wemaplem1 | |- ( ( X e. ( B ^m A ) /\ Q e. ( B ^m A ) ) -> ( X T Q <-> E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) |
| 13 | 3 4 12 | syl2anc | |- ( ph -> ( X T Q <-> E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) |
| 14 | 8 13 | mpbid | |- ( ph -> E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) |
| 15 | 2 | ad2antrr | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> P e. ( B ^m A ) ) |
| 16 | 3 | ad2antrr | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> X e. ( B ^m A ) ) |
| 17 | 4 | ad2antrr | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> Q e. ( B ^m A ) ) |
| 18 | 5 | ad2antrr | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> R Or A ) |
| 19 | 6 | ad2antrr | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> S Po B ) |
| 20 | simplrl | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> a e. A ) |
|
| 21 | simp2rl | |- ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> ( P ` a ) S ( X ` a ) ) |
|
| 22 | 21 | 3expa | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> ( P ` a ) S ( X ` a ) ) |
| 23 | simprr | |- ( ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) -> A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) |
|
| 24 | 23 | ad2antlr | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) |
| 25 | simprl | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> b e. A ) |
|
| 26 | simprrl | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> ( X ` b ) S ( Q ` b ) ) |
|
| 27 | simprrr | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) |
|
| 28 | 1 15 16 17 18 19 20 22 24 25 26 27 | wemaplem2 | |- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> P T Q ) |
| 29 | 28 | rexlimdvaa | |- ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) -> ( E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> P T Q ) ) |
| 30 | 29 | rexlimdvaa | |- ( ph -> ( E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) -> ( E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> P T Q ) ) ) |
| 31 | 11 14 30 | mp2d | |- ( ph -> P T Q ) |