This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioc0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,] B ) = (/) <-> B <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,] B ) = { x e. RR* | ( A < x /\ x <_ B ) } ) |
|
| 2 | 1 | eqeq1d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,] B ) = (/) <-> { x e. RR* | ( A < x /\ x <_ B ) } = (/) ) ) |
| 3 | df-ne | |- ( { x e. RR* | ( A < x /\ x <_ B ) } =/= (/) <-> -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) ) |
|
| 4 | rabn0 | |- ( { x e. RR* | ( A < x /\ x <_ B ) } =/= (/) <-> E. x e. RR* ( A < x /\ x <_ B ) ) |
|
| 5 | 3 4 | bitr3i | |- ( -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> E. x e. RR* ( A < x /\ x <_ B ) ) |
| 6 | xrltletr | |- ( ( A e. RR* /\ x e. RR* /\ B e. RR* ) -> ( ( A < x /\ x <_ B ) -> A < B ) ) |
|
| 7 | 6 | 3com23 | |- ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) -> ( ( A < x /\ x <_ B ) -> A < B ) ) |
| 8 | 7 | 3expa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. RR* ) -> ( ( A < x /\ x <_ B ) -> A < B ) ) |
| 9 | 8 | rexlimdva | |- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x <_ B ) -> A < B ) ) |
| 10 | qbtwnxr | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
|
| 11 | qre | |- ( x e. QQ -> x e. RR ) |
|
| 12 | 11 | rexrd | |- ( x e. QQ -> x e. RR* ) |
| 13 | 12 | a1i | |- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( x e. QQ -> x e. RR* ) ) |
| 14 | xrltle | |- ( ( x e. RR* /\ B e. RR* ) -> ( x < B -> x <_ B ) ) |
|
| 15 | 14 | 3ad2antr2 | |- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( x < B -> x <_ B ) ) |
| 16 | 15 | anim2d | |- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( ( A < x /\ x < B ) -> ( A < x /\ x <_ B ) ) ) |
| 17 | 13 16 | anim12d | |- ( ( x e. RR* /\ ( A e. RR* /\ B e. RR* /\ A < B ) ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) |
| 18 | 17 | ex | |- ( x e. RR* -> ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) ) |
| 19 | 12 18 | syl | |- ( x e. QQ -> ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) ) |
| 20 | 19 | adantr | |- ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) ) |
| 21 | 20 | pm2.43b | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x <_ B ) ) ) ) |
| 22 | 21 | reximdv2 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( E. x e. QQ ( A < x /\ x < B ) -> E. x e. RR* ( A < x /\ x <_ B ) ) ) |
| 23 | 10 22 | mpd | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. RR* ( A < x /\ x <_ B ) ) |
| 24 | 23 | 3expia | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. RR* ( A < x /\ x <_ B ) ) ) |
| 25 | 9 24 | impbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x <_ B ) <-> A < B ) ) |
| 26 | 5 25 | bitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> A < B ) ) |
| 27 | xrltnle | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) |
|
| 28 | 26 27 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> -. B <_ A ) ) |
| 29 | 28 | con4bid | |- ( ( A e. RR* /\ B e. RR* ) -> ( { x e. RR* | ( A < x /\ x <_ B ) } = (/) <-> B <_ A ) ) |
| 30 | 2 29 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,] B ) = (/) <-> B <_ A ) ) |