This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioovolcl | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl | |- ( A (,) B ) e. dom vol |
|
| 2 | mblvol | |- ( ( A (,) B ) e. dom vol -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) |
|
| 3 | 1 2 | mp1i | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) = ( vol* ` ( A (,) B ) ) ) |
| 4 | ltle | |- ( ( B e. RR /\ A e. RR ) -> ( B < A -> B <_ A ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B < A -> B <_ A ) ) |
| 6 | 5 | imdistani | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( ( A e. RR /\ B e. RR ) /\ B <_ A ) ) |
| 7 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 8 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 9 | ioo0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 11 | 10 | biimpar | |- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( A (,) B ) = (/) ) |
| 12 | fveq2 | |- ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) = ( vol* ` (/) ) ) |
|
| 13 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 14 | 12 13 | eqtrdi | |- ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) = 0 ) |
| 15 | 0re | |- 0 e. RR |
|
| 16 | 14 15 | eqeltrdi | |- ( ( A (,) B ) = (/) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 17 | 6 11 16 | 3syl | |- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 18 | ovolioo | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) |
|
| 19 | 18 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) = ( B - A ) ) |
| 20 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 21 | 20 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 22 | 21 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B - A ) e. RR ) |
| 23 | 19 22 | eqeltrd | |- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 24 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 25 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 26 | 17 23 24 25 | ltlecasei | |- ( ( A e. RR /\ B e. RR ) -> ( vol* ` ( A (,) B ) ) e. RR ) |
| 27 | 3 26 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A (,) B ) ) e. RR ) |