This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of an open interval with its upper endpoint is a left-open right-closed interval. (Contributed by Jon Pennant, 8-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioounsn | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* ) |
|
| 2 | iccid | |- ( B e. RR* -> ( B [,] B ) = { B } ) |
|
| 3 | 1 2 | syl | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( B [,] B ) = { B } ) |
| 4 | 3 | uneq2d | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( ( A (,) B ) u. { B } ) ) |
| 5 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) |
|
| 6 | simp3 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) |
|
| 7 | 1 | xrleidd | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B <_ B ) |
| 8 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 9 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 10 | xrlenlt | |- ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) |
|
| 11 | df-ioc | |- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
|
| 12 | simpl1 | |- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w e. RR* ) |
|
| 13 | simpl2 | |- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> B e. RR* ) |
|
| 14 | simprl | |- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w < B ) |
|
| 15 | 12 13 14 | xrltled | |- ( ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( w < B /\ B <_ B ) ) -> w <_ B ) |
| 16 | 15 | ex | |- ( ( w e. RR* /\ B e. RR* /\ B e. RR* ) -> ( ( w < B /\ B <_ B ) -> w <_ B ) ) |
| 17 | xrltletr | |- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A < B /\ B <_ w ) -> A < w ) ) |
|
| 18 | 8 9 10 11 16 17 | ixxun | |- ( ( ( A e. RR* /\ B e. RR* /\ B e. RR* ) /\ ( A < B /\ B <_ B ) ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( A (,] B ) ) |
| 19 | 5 1 1 6 7 18 | syl32anc | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. ( B [,] B ) ) = ( A (,] B ) ) |
| 20 | 4 19 | eqtr3d | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |