This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qnegcl | |- ( A e. QQ -> -u A e. QQ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | |- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
|
| 2 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 3 | 2 | adantr | |- ( ( x e. ZZ /\ y e. NN ) -> x e. CC ) |
| 4 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 5 | 4 | adantl | |- ( ( x e. ZZ /\ y e. NN ) -> y e. CC ) |
| 6 | nnne0 | |- ( y e. NN -> y =/= 0 ) |
|
| 7 | 6 | adantl | |- ( ( x e. ZZ /\ y e. NN ) -> y =/= 0 ) |
| 8 | 3 5 7 | divnegd | |- ( ( x e. ZZ /\ y e. NN ) -> -u ( x / y ) = ( -u x / y ) ) |
| 9 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 10 | znq | |- ( ( -u x e. ZZ /\ y e. NN ) -> ( -u x / y ) e. QQ ) |
|
| 11 | 9 10 | sylan | |- ( ( x e. ZZ /\ y e. NN ) -> ( -u x / y ) e. QQ ) |
| 12 | 8 11 | eqeltrd | |- ( ( x e. ZZ /\ y e. NN ) -> -u ( x / y ) e. QQ ) |
| 13 | negeq | |- ( A = ( x / y ) -> -u A = -u ( x / y ) ) |
|
| 14 | 13 | eleq1d | |- ( A = ( x / y ) -> ( -u A e. QQ <-> -u ( x / y ) e. QQ ) ) |
| 15 | 12 14 | syl5ibrcom | |- ( ( x e. ZZ /\ y e. NN ) -> ( A = ( x / y ) -> -u A e. QQ ) ) |
| 16 | 15 | rexlimivv | |- ( E. x e. ZZ E. y e. NN A = ( x / y ) -> -u A e. QQ ) |
| 17 | 1 16 | sylbi | |- ( A e. QQ -> -u A e. QQ ) |