This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd , which avoids the need to provide a "dummy antecedent" ph if there is no natural one to choose. (Contributed by AV, 30-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseri.1 | |- Rel R |
|
| iseri.2 | |- ( x R y -> y R x ) |
||
| iseri.3 | |- ( ( x R y /\ y R z ) -> x R z ) |
||
| iseri.4 | |- ( x e. A <-> x R x ) |
||
| Assertion | iseri | |- R Er A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseri.1 | |- Rel R |
|
| 2 | iseri.2 | |- ( x R y -> y R x ) |
|
| 3 | iseri.3 | |- ( ( x R y /\ y R z ) -> x R z ) |
|
| 4 | iseri.4 | |- ( x e. A <-> x R x ) |
|
| 5 | 1 | a1i | |- ( T. -> Rel R ) |
| 6 | 2 | adantl | |- ( ( T. /\ x R y ) -> y R x ) |
| 7 | 3 | adantl | |- ( ( T. /\ ( x R y /\ y R z ) ) -> x R z ) |
| 8 | 4 | a1i | |- ( T. -> ( x e. A <-> x R x ) ) |
| 9 | 5 6 7 8 | iserd | |- ( T. -> R Er A ) |
| 10 | 9 | mptru | |- R Er A |