This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induction step for a vertex degree calculation, for example in the Königsberg graph. If the degree of U in the edge set E is P , then adding { U , X } to the edge set, where X =/= U , yields degree P + 1 . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vdegp1ai.vg | |- V = ( Vtx ` G ) |
|
| vdegp1ai.u | |- U e. V |
||
| vdegp1ai.i | |- I = ( iEdg ` G ) |
||
| vdegp1ai.w | |- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
||
| vdegp1ai.d | |- ( ( VtxDeg ` G ) ` U ) = P |
||
| vdegp1ai.vf | |- ( Vtx ` F ) = V |
||
| vdegp1bi.x | |- X e. V |
||
| vdegp1bi.xu | |- X =/= U |
||
| vdegp1bi.f | |- ( iEdg ` F ) = ( I ++ <" { U , X } "> ) |
||
| Assertion | vdegp1bi | |- ( ( VtxDeg ` F ) ` U ) = ( P + 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vdegp1ai.vg | |- V = ( Vtx ` G ) |
|
| 2 | vdegp1ai.u | |- U e. V |
|
| 3 | vdegp1ai.i | |- I = ( iEdg ` G ) |
|
| 4 | vdegp1ai.w | |- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
|
| 5 | vdegp1ai.d | |- ( ( VtxDeg ` G ) ` U ) = P |
|
| 6 | vdegp1ai.vf | |- ( Vtx ` F ) = V |
|
| 7 | vdegp1bi.x | |- X e. V |
|
| 8 | vdegp1bi.xu | |- X =/= U |
|
| 9 | vdegp1bi.f | |- ( iEdg ` F ) = ( I ++ <" { U , X } "> ) |
|
| 10 | prex | |- { U , X } e. _V |
|
| 11 | wrdf | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I : ( 0 ..^ ( # ` I ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 12 | 11 | ffund | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> Fun I ) |
| 13 | 4 12 | mp1i | |- ( { U , X } e. _V -> Fun I ) |
| 14 | 6 | a1i | |- ( { U , X } e. _V -> ( Vtx ` F ) = V ) |
| 15 | wrdv | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I e. Word _V ) |
|
| 16 | 4 15 | ax-mp | |- I e. Word _V |
| 17 | cats1un | |- ( ( I e. Word _V /\ { U , X } e. _V ) -> ( I ++ <" { U , X } "> ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
|
| 18 | 16 17 | mpan | |- ( { U , X } e. _V -> ( I ++ <" { U , X } "> ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
| 19 | 9 18 | eqtrid | |- ( { U , X } e. _V -> ( iEdg ` F ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
| 20 | fvexd | |- ( { U , X } e. _V -> ( # ` I ) e. _V ) |
|
| 21 | wrdlndm | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` I ) e/ dom I ) |
|
| 22 | 4 21 | mp1i | |- ( { U , X } e. _V -> ( # ` I ) e/ dom I ) |
| 23 | 2 | a1i | |- ( { U , X } e. _V -> U e. V ) |
| 24 | 2 7 | pm3.2i | |- ( U e. V /\ X e. V ) |
| 25 | prelpwi | |- ( ( U e. V /\ X e. V ) -> { U , X } e. ~P V ) |
|
| 26 | 24 25 | mp1i | |- ( { U , X } e. _V -> { U , X } e. ~P V ) |
| 27 | prid1g | |- ( U e. V -> U e. { U , X } ) |
|
| 28 | 2 27 | mp1i | |- ( { U , X } e. _V -> U e. { U , X } ) |
| 29 | 8 | necomi | |- U =/= X |
| 30 | hashprg | |- ( ( U e. V /\ X e. V ) -> ( U =/= X <-> ( # ` { U , X } ) = 2 ) ) |
|
| 31 | 2 7 30 | mp2an | |- ( U =/= X <-> ( # ` { U , X } ) = 2 ) |
| 32 | 29 31 | mpbi | |- ( # ` { U , X } ) = 2 |
| 33 | 32 | eqcomi | |- 2 = ( # ` { U , X } ) |
| 34 | 2re | |- 2 e. RR |
|
| 35 | 34 | eqlei | |- ( 2 = ( # ` { U , X } ) -> 2 <_ ( # ` { U , X } ) ) |
| 36 | 33 35 | mp1i | |- ( { U , X } e. _V -> 2 <_ ( # ` { U , X } ) ) |
| 37 | 1 3 13 14 19 20 22 23 26 28 36 | p1evtxdp1 | |- ( { U , X } e. _V -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e 1 ) ) |
| 38 | 10 37 | ax-mp | |- ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e 1 ) |
| 39 | fzofi | |- ( 0 ..^ ( # ` I ) ) e. Fin |
|
| 40 | wrddm | |- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> dom I = ( 0 ..^ ( # ` I ) ) ) |
|
| 41 | 4 40 | ax-mp | |- dom I = ( 0 ..^ ( # ` I ) ) |
| 42 | 41 | eqcomi | |- ( 0 ..^ ( # ` I ) ) = dom I |
| 43 | 1 3 42 | vtxdgfisnn0 | |- ( ( ( 0 ..^ ( # ` I ) ) e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) e. NN0 ) |
| 44 | 39 2 43 | mp2an | |- ( ( VtxDeg ` G ) ` U ) e. NN0 |
| 45 | 44 | nn0rei | |- ( ( VtxDeg ` G ) ` U ) e. RR |
| 46 | 1re | |- 1 e. RR |
|
| 47 | rexadd | |- ( ( ( ( VtxDeg ` G ) ` U ) e. RR /\ 1 e. RR ) -> ( ( ( VtxDeg ` G ) ` U ) +e 1 ) = ( ( ( VtxDeg ` G ) ` U ) + 1 ) ) |
|
| 48 | 45 46 47 | mp2an | |- ( ( ( VtxDeg ` G ) ` U ) +e 1 ) = ( ( ( VtxDeg ` G ) ` U ) + 1 ) |
| 49 | 5 | oveq1i | |- ( ( ( VtxDeg ` G ) ` U ) + 1 ) = ( P + 1 ) |
| 50 | 38 48 49 | 3eqtri | |- ( ( VtxDeg ` F ) ` U ) = ( P + 1 ) |