This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013) (Revised by Mario Carneiro, 5-May-2016) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashprg | |- ( ( A e. V /\ B e. W ) -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. V /\ B e. W ) -> B e. W ) |
|
| 2 | elsni | |- ( B e. { A } -> B = A ) |
|
| 3 | 2 | eqcomd | |- ( B e. { A } -> A = B ) |
| 4 | 3 | necon3ai | |- ( A =/= B -> -. B e. { A } ) |
| 5 | snfi | |- { A } e. Fin |
|
| 6 | hashunsng | |- ( B e. W -> ( ( { A } e. Fin /\ -. B e. { A } ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) ) |
|
| 7 | 6 | imp | |- ( ( B e. W /\ ( { A } e. Fin /\ -. B e. { A } ) ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) |
| 8 | 5 7 | mpanr1 | |- ( ( B e. W /\ -. B e. { A } ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) |
| 9 | 1 4 8 | syl2an | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) |
| 10 | hashsng | |- ( A e. V -> ( # ` { A } ) = 1 ) |
|
| 11 | 10 | adantr | |- ( ( A e. V /\ B e. W ) -> ( # ` { A } ) = 1 ) |
| 12 | 11 | adantr | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` { A } ) = 1 ) |
| 13 | 12 | oveq1d | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( ( # ` { A } ) + 1 ) = ( 1 + 1 ) ) |
| 14 | 9 13 | eqtrd | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` ( { A } u. { B } ) ) = ( 1 + 1 ) ) |
| 15 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 16 | 15 | fveq2i | |- ( # ` { A , B } ) = ( # ` ( { A } u. { B } ) ) |
| 17 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 18 | 14 16 17 | 3eqtr4g | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` { A , B } ) = 2 ) |
| 19 | 1ne2 | |- 1 =/= 2 |
|
| 20 | 19 | a1i | |- ( ( A e. V /\ B e. W ) -> 1 =/= 2 ) |
| 21 | 11 20 | eqnetrd | |- ( ( A e. V /\ B e. W ) -> ( # ` { A } ) =/= 2 ) |
| 22 | dfsn2 | |- { A } = { A , A } |
|
| 23 | preq2 | |- ( A = B -> { A , A } = { A , B } ) |
|
| 24 | 22 23 | eqtr2id | |- ( A = B -> { A , B } = { A } ) |
| 25 | 24 | fveq2d | |- ( A = B -> ( # ` { A , B } ) = ( # ` { A } ) ) |
| 26 | 25 | neeq1d | |- ( A = B -> ( ( # ` { A , B } ) =/= 2 <-> ( # ` { A } ) =/= 2 ) ) |
| 27 | 21 26 | syl5ibrcom | |- ( ( A e. V /\ B e. W ) -> ( A = B -> ( # ` { A , B } ) =/= 2 ) ) |
| 28 | 27 | necon2d | |- ( ( A e. V /\ B e. W ) -> ( ( # ` { A , B } ) = 2 -> A =/= B ) ) |
| 29 | 28 | imp | |- ( ( ( A e. V /\ B e. W ) /\ ( # ` { A , B } ) = 2 ) -> A =/= B ) |
| 30 | 18 29 | impbida | |- ( ( A e. V /\ B e. W ) -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |