This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in a graph of finite size is a nonnegative integer. (Contributed by Alexander van der Vekens, 10-Mar-2018) (Revised by AV, 11-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| vtxdg0e.i | |- I = ( iEdg ` G ) |
||
| vtxdgfisnn0.a | |- A = dom I |
||
| Assertion | vtxdgfisnn0 | |- ( ( A e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdg0e.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdgfisnn0.a | |- A = dom I |
|
| 4 | 1 2 3 | vtxdgfival | |- ( ( A e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) + ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
| 5 | rabfi | |- ( A e. Fin -> { x e. A | U e. ( I ` x ) } e. Fin ) |
|
| 6 | hashcl | |- ( { x e. A | U e. ( I ` x ) } e. Fin -> ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0 ) |
|
| 7 | 5 6 | syl | |- ( A e. Fin -> ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0 ) |
| 8 | rabfi | |- ( A e. Fin -> { x e. A | ( I ` x ) = { U } } e. Fin ) |
|
| 9 | hashcl | |- ( { x e. A | ( I ` x ) = { U } } e. Fin -> ( # ` { x e. A | ( I ` x ) = { U } } ) e. NN0 ) |
|
| 10 | 8 9 | syl | |- ( A e. Fin -> ( # ` { x e. A | ( I ` x ) = { U } } ) e. NN0 ) |
| 11 | 7 10 | nn0addcld | |- ( A e. Fin -> ( ( # ` { x e. A | U e. ( I ` x ) } ) + ( # ` { x e. A | ( I ` x ) = { U } } ) ) e. NN0 ) |
| 12 | 11 | adantr | |- ( ( A e. Fin /\ U e. V ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) + ( # ` { x e. A | ( I ` x ) = { U } } ) ) e. NN0 ) |
| 13 | 4 12 | eqeltrd | |- ( ( A e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) e. NN0 ) |