This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Second direction for ustbas . (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustbas2 | |- ( U e. ( UnifOn ` X ) -> X = dom U. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxpid | |- dom ( X X. X ) = X |
|
| 2 | ustbasel | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) |
|
| 3 | elssuni | |- ( ( X X. X ) e. U -> ( X X. X ) C_ U. U ) |
|
| 4 | 2 3 | syl | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) C_ U. U ) |
| 5 | elfvex | |- ( U e. ( UnifOn ` X ) -> X e. _V ) |
|
| 6 | isust | |- ( X e. _V -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
|
| 7 | 5 6 | syl | |- ( U e. ( UnifOn ` X ) -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
| 8 | 7 | ibi | |- ( U e. ( UnifOn ` X ) -> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) |
| 9 | 8 | simp1d | |- ( U e. ( UnifOn ` X ) -> U C_ ~P ( X X. X ) ) |
| 10 | 9 | unissd | |- ( U e. ( UnifOn ` X ) -> U. U C_ U. ~P ( X X. X ) ) |
| 11 | unipw | |- U. ~P ( X X. X ) = ( X X. X ) |
|
| 12 | 10 11 | sseqtrdi | |- ( U e. ( UnifOn ` X ) -> U. U C_ ( X X. X ) ) |
| 13 | 4 12 | eqssd | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) = U. U ) |
| 14 | 13 | dmeqd | |- ( U e. ( UnifOn ` X ) -> dom ( X X. X ) = dom U. U ) |
| 15 | 1 14 | eqtr3id | |- ( U e. ( UnifOn ` X ) -> X = dom U. U ) |