This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a point A in X , ( V " { A } ) is small enough in ( V o.`' V ) ` . This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustneism |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnzg | ||
| 2 | 1 | adantl | |
| 3 | xpco | ||
| 4 | 2 3 | syl | |
| 5 | cnvxp | ||
| 6 | ressn | ||
| 7 | 6 | cnveqi | |
| 8 | resss | ||
| 9 | cnvss | ||
| 10 | 8 9 | ax-mp | |
| 11 | 7 10 | eqsstrri | |
| 12 | 5 11 | eqsstrri | |
| 13 | coss2 | ||
| 14 | 12 13 | mp1i | |
| 15 | 6 8 | eqsstrri | |
| 16 | coss1 | ||
| 17 | 15 16 | mp1i | |
| 18 | 14 17 | sstrd | |
| 19 | 4 18 | eqsstrrd |