This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 ) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres.v | |- V = ( Vtx ` G ) |
|
| upgrres.e | |- E = ( iEdg ` G ) |
||
| upgrres.f | |- F = { i e. dom E | N e/ ( E ` i ) } |
||
| upgrres.s | |- S = <. ( V \ { N } ) , ( E |` F ) >. |
||
| Assertion | usgrres | |- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrres.e | |- E = ( iEdg ` G ) |
|
| 3 | upgrres.f | |- F = { i e. dom E | N e/ ( E ` i ) } |
|
| 4 | upgrres.s | |- S = <. ( V \ { N } ) , ( E |` F ) >. |
|
| 5 | 1 2 | usgrf | |- ( G e. USGraph -> E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
| 6 | 3 | ssrab3 | |- F C_ dom E |
| 7 | 6 | a1i | |- ( ( G e. USGraph /\ N e. V ) -> F C_ dom E ) |
| 8 | f1ssres | |- ( ( E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ F C_ dom E ) -> ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
|
| 9 | 5 7 8 | syl2an2r | |- ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
| 10 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 11 | 1 2 3 | umgrreslem | |- ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 12 | 10 11 | sylan | |- ( ( G e. USGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 13 | f1ssr | |- ( ( ( E |` F ) : F -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) -> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
|
| 14 | 9 12 13 | syl2anc | |- ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 15 | ssdmres | |- ( F C_ dom E <-> dom ( E |` F ) = F ) |
|
| 16 | 6 15 | mpbi | |- dom ( E |` F ) = F |
| 17 | f1eq2 | |- ( dom ( E |` F ) = F -> ( ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
|
| 18 | 16 17 | ax-mp | |- ( ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( E |` F ) : F -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 19 | 14 18 | sylibr | |- ( ( G e. USGraph /\ N e. V ) -> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 20 | opex | |- <. ( V \ { N } ) , ( E |` F ) >. e. _V |
|
| 21 | 4 20 | eqeltri | |- S e. _V |
| 22 | 1 2 3 4 | uhgrspan1lem2 | |- ( Vtx ` S ) = ( V \ { N } ) |
| 23 | 22 | eqcomi | |- ( V \ { N } ) = ( Vtx ` S ) |
| 24 | 1 2 3 4 | uhgrspan1lem3 | |- ( iEdg ` S ) = ( E |` F ) |
| 25 | 24 | eqcomi | |- ( E |` F ) = ( iEdg ` S ) |
| 26 | 23 25 | isusgrs | |- ( S e. _V -> ( S e. USGraph <-> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 27 | 21 26 | mp1i | |- ( ( G e. USGraph /\ N e. V ) -> ( S e. USGraph <-> ( E |` F ) : dom ( E |` F ) -1-1-> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 28 | 19 27 | mpbird | |- ( ( G e. USGraph /\ N e. V ) -> S e. USGraph ) |