This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for umgrres and usgrres . (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres.v | |- V = ( Vtx ` G ) |
|
| upgrres.e | |- E = ( iEdg ` G ) |
||
| upgrres.f | |- F = { i e. dom E | N e/ ( E ` i ) } |
||
| Assertion | umgrreslem | |- ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrres.e | |- E = ( iEdg ` G ) |
|
| 3 | upgrres.f | |- F = { i e. dom E | N e/ ( E ` i ) } |
|
| 4 | df-ima | |- ( E " F ) = ran ( E |` F ) |
|
| 5 | fveq2 | |- ( i = j -> ( E ` i ) = ( E ` j ) ) |
|
| 6 | neleq2 | |- ( ( E ` i ) = ( E ` j ) -> ( N e/ ( E ` i ) <-> N e/ ( E ` j ) ) ) |
|
| 7 | 5 6 | syl | |- ( i = j -> ( N e/ ( E ` i ) <-> N e/ ( E ` j ) ) ) |
| 8 | 7 3 | elrab2 | |- ( j e. F <-> ( j e. dom E /\ N e/ ( E ` j ) ) ) |
| 9 | 1 2 | umgrf | |- ( G e. UMGraph -> E : dom E --> { p e. ~P V | ( # ` p ) = 2 } ) |
| 10 | ffvelcdm | |- ( ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } /\ j e. dom E ) -> ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } ) |
|
| 11 | fveqeq2 | |- ( p = ( E ` j ) -> ( ( # ` p ) = 2 <-> ( # ` ( E ` j ) ) = 2 ) ) |
|
| 12 | 11 | elrab | |- ( ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } <-> ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) ) |
| 13 | simpll | |- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P V ) |
|
| 14 | elpwi | |- ( ( E ` j ) e. ~P V -> ( E ` j ) C_ V ) |
|
| 15 | 14 | adantr | |- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( E ` j ) C_ V ) |
| 16 | 15 | adantr | |- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) C_ V ) |
| 17 | simpr | |- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> N e/ ( E ` j ) ) |
|
| 18 | elpwdifsn | |- ( ( ( E ` j ) e. ~P V /\ ( E ` j ) C_ V /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P ( V \ { N } ) ) |
|
| 19 | 13 16 17 18 | syl3anc | |- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. ~P ( V \ { N } ) ) |
| 20 | simpr | |- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( # ` ( E ` j ) ) = 2 ) |
|
| 21 | 20 | adantr | |- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( # ` ( E ` j ) ) = 2 ) |
| 22 | 11 19 21 | elrabd | |- ( ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) /\ N e/ ( E ` j ) ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 23 | 22 | ex | |- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 24 | 23 | a1d | |- ( ( ( E ` j ) e. ~P V /\ ( # ` ( E ` j ) ) = 2 ) -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) |
| 25 | 12 24 | sylbi | |- ( ( E ` j ) e. { p e. ~P V | ( # ` p ) = 2 } -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) |
| 26 | 10 25 | syl | |- ( ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } /\ j e. dom E ) -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) |
| 27 | 26 | ex | |- ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } -> ( j e. dom E -> ( N e. V -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) |
| 28 | 27 | com23 | |- ( E : dom E --> { p e. ~P V | ( # ` p ) = 2 } -> ( N e. V -> ( j e. dom E -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) |
| 29 | 9 28 | syl | |- ( G e. UMGraph -> ( N e. V -> ( j e. dom E -> ( N e/ ( E ` j ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) ) ) |
| 30 | 29 | imp4b | |- ( ( G e. UMGraph /\ N e. V ) -> ( ( j e. dom E /\ N e/ ( E ` j ) ) -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 31 | 8 30 | biimtrid | |- ( ( G e. UMGraph /\ N e. V ) -> ( j e. F -> ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 32 | 31 | ralrimiv | |- ( ( G e. UMGraph /\ N e. V ) -> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 33 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 34 | 2 | uhgrfun | |- ( G e. UHGraph -> Fun E ) |
| 35 | 33 34 | syl | |- ( G e. UMGraph -> Fun E ) |
| 36 | 35 | adantr | |- ( ( G e. UMGraph /\ N e. V ) -> Fun E ) |
| 37 | 3 | ssrab3 | |- F C_ dom E |
| 38 | funimass4 | |- ( ( Fun E /\ F C_ dom E ) -> ( ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
|
| 39 | 36 37 38 | sylancl | |- ( ( G e. UMGraph /\ N e. V ) -> ( ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> A. j e. F ( E ` j ) e. { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 40 | 32 39 | mpbird | |- ( ( G e. UMGraph /\ N e. V ) -> ( E " F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 41 | 4 40 | eqsstrrid | |- ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |