This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for uhgrspan1 . (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan1.v | |- V = ( Vtx ` G ) |
|
| uhgrspan1.i | |- I = ( iEdg ` G ) |
||
| uhgrspan1.f | |- F = { i e. dom I | N e/ ( I ` i ) } |
||
| uhgrspan1.s | |- S = <. ( V \ { N } ) , ( I |` F ) >. |
||
| Assertion | uhgrspan1lem3 | |- ( iEdg ` S ) = ( I |` F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.v | |- V = ( Vtx ` G ) |
|
| 2 | uhgrspan1.i | |- I = ( iEdg ` G ) |
|
| 3 | uhgrspan1.f | |- F = { i e. dom I | N e/ ( I ` i ) } |
|
| 4 | uhgrspan1.s | |- S = <. ( V \ { N } ) , ( I |` F ) >. |
|
| 5 | 4 | fveq2i | |- ( iEdg ` S ) = ( iEdg ` <. ( V \ { N } ) , ( I |` F ) >. ) |
| 6 | 1 2 3 | uhgrspan1lem1 | |- ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V ) |
| 7 | opiedgfv | |- ( ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V ) -> ( iEdg ` <. ( V \ { N } ) , ( I |` F ) >. ) = ( I |` F ) ) |
|
| 8 | 6 7 | ax-mp | |- ( iEdg ` <. ( V \ { N } ) , ( I |` F ) >. ) = ( I |` F ) |
| 9 | 5 8 | eqtri | |- ( iEdg ` S ) = ( I |` F ) |