This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a simple graph, simplified version of isusgr . (Contributed by Alexander van der Vekens, 13-Aug-2017) (Revised by AV, 13-Oct-2020) (Proof shortened by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isuspgr.v | |- V = ( Vtx ` G ) |
|
| isuspgr.e | |- E = ( iEdg ` G ) |
||
| Assertion | isusgrs | |- ( G e. U -> ( G e. USGraph <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isuspgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isuspgr.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | isusgr | |- ( G e. U -> ( G e. USGraph <-> E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 4 | prprrab | |- { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } |
|
| 5 | f1eq3 | |- ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } -> ( E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
|
| 6 | 4 5 | mp1i | |- ( G e. U -> ( E : dom E -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 7 | 3 6 | bitrd | |- ( G e. U -> ( G e. USGraph <-> E : dom E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |