This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 ) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgrres.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| upgrres.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| upgrres.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 | ||
| Assertion | usgrres | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgrres.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | upgrres.f | ⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 4 | upgrres.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 | |
| 5 | 1 2 | usgrf | ⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 6 | 3 | ssrab3 | ⊢ 𝐹 ⊆ dom 𝐸 |
| 7 | 6 | a1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ dom 𝐸 ) |
| 8 | f1ssres | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝐹 ⊆ dom 𝐸 ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 9 | 5 7 8 | syl2an2r | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 10 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 11 | 1 2 3 | umgrreslem | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 12 | 10 11 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 13 | f1ssr | ⊢ ( ( ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) | |
| 14 | 9 12 13 | syl2anc | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 15 | ssdmres | ⊢ ( 𝐹 ⊆ dom 𝐸 ↔ dom ( 𝐸 ↾ 𝐹 ) = 𝐹 ) | |
| 16 | 6 15 | mpbi | ⊢ dom ( 𝐸 ↾ 𝐹 ) = 𝐹 |
| 17 | f1eq2 | ⊢ ( dom ( 𝐸 ↾ 𝐹 ) = 𝐹 → ( ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 19 | 14 18 | sylibr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
| 20 | opex | ⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 ∈ V | |
| 21 | 4 20 | eqeltri | ⊢ 𝑆 ∈ V |
| 22 | 1 2 3 4 | uhgrspan1lem2 | ⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 23 | 22 | eqcomi | ⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 24 | 1 2 3 4 | uhgrspan1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐹 ) |
| 25 | 24 | eqcomi | ⊢ ( 𝐸 ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
| 26 | 23 25 | isusgrs | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ USGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
| 27 | 21 26 | mp1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ USGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
| 28 | 19 27 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |