This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph is an undirected multigraph. (Contributed by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | usgrfs | |- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 4 | f1f | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
|
| 5 | 3 4 | syl | |- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 6 | 1 2 | isumgrs | |- ( G e. USGraph -> ( G e. UMGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 7 | 5 6 | mpbird | |- ( G e. USGraph -> G e. UMGraph ) |