This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ssres | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | fssres | |- ( ( F : A --> B /\ C C_ A ) -> ( F |` C ) : C --> B ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C --> B ) |
| 4 | df-f1 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
|
| 5 | funres11 | |- ( Fun `' F -> Fun `' ( F |` C ) ) |
|
| 6 | 4 5 | simplbiim | |- ( F : A -1-1-> B -> Fun `' ( F |` C ) ) |
| 7 | 6 | adantr | |- ( ( F : A -1-1-> B /\ C C_ A ) -> Fun `' ( F |` C ) ) |
| 8 | df-f1 | |- ( ( F |` C ) : C -1-1-> B <-> ( ( F |` C ) : C --> B /\ Fun `' ( F |` C ) ) ) |
|
| 9 | 3 7 8 | sylanbrc | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-> B ) |