This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| Assertion | usgrnloopv | |- ( ( G e. USGraph /\ M e. W ) -> ( ( E ` X ) = { M , N } -> M =/= N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnloopv.e | |- E = ( iEdg ` G ) |
|
| 2 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 3 | 1 | umgrnloopv | |- ( ( G e. UMGraph /\ M e. W ) -> ( ( E ` X ) = { M , N } -> M =/= N ) ) |
| 4 | 2 3 | sylan | |- ( ( G e. USGraph /\ M e. W ) -> ( ( E ` X ) = { M , N } -> M =/= N ) ) |