This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018) (Proof shortened by AV, 30-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2f1fvneq | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> X =/= Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> E : D -1-1-> R ) |
|
| 2 | f1f | |- ( F : C -1-1-> D -> F : C --> D ) |
|
| 3 | 2 | adantl | |- ( ( E : D -1-1-> R /\ F : C -1-1-> D ) -> F : C --> D ) |
| 4 | 3 | adantr | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> F : C --> D ) |
| 5 | simpl | |- ( ( A e. C /\ B e. C ) -> A e. C ) |
|
| 6 | 5 | adantl | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> A e. C ) |
| 7 | 4 6 | ffvelcdmd | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> ( F ` A ) e. D ) |
| 8 | 7 | 3adant3 | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( F ` A ) e. D ) |
| 9 | simpr | |- ( ( A e. C /\ B e. C ) -> B e. C ) |
|
| 10 | 9 | adantl | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> B e. C ) |
| 11 | 4 10 | ffvelcdmd | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) ) -> ( F ` B ) e. D ) |
| 12 | 11 | 3adant3 | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( F ` B ) e. D ) |
| 13 | simpr | |- ( ( E : D -1-1-> R /\ F : C -1-1-> D ) -> F : C -1-1-> D ) |
|
| 14 | df-3an | |- ( ( A e. C /\ B e. C /\ A =/= B ) <-> ( ( A e. C /\ B e. C ) /\ A =/= B ) ) |
|
| 15 | 14 | biimpri | |- ( ( ( A e. C /\ B e. C ) /\ A =/= B ) -> ( A e. C /\ B e. C /\ A =/= B ) ) |
| 16 | dff14i | |- ( ( F : C -1-1-> D /\ ( A e. C /\ B e. C /\ A =/= B ) ) -> ( F ` A ) =/= ( F ` B ) ) |
|
| 17 | 13 15 16 | syl3an132 | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( F ` A ) =/= ( F ` B ) ) |
| 18 | dff14i | |- ( ( E : D -1-1-> R /\ ( ( F ` A ) e. D /\ ( F ` B ) e. D /\ ( F ` A ) =/= ( F ` B ) ) ) -> ( E ` ( F ` A ) ) =/= ( E ` ( F ` B ) ) ) |
|
| 19 | 1 8 12 17 18 | syl13anc | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( E ` ( F ` A ) ) =/= ( E ` ( F ` B ) ) ) |
| 20 | simpl | |- ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> ( E ` ( F ` A ) ) = X ) |
|
| 21 | simpr | |- ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> ( E ` ( F ` B ) ) = Y ) |
|
| 22 | 20 21 | neeq12d | |- ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> ( ( E ` ( F ` A ) ) =/= ( E ` ( F ` B ) ) <-> X =/= Y ) ) |
| 23 | 19 22 | syl5ibcom | |- ( ( ( E : D -1-1-> R /\ F : C -1-1-> D ) /\ ( A e. C /\ B e. C ) /\ A =/= B ) -> ( ( ( E ` ( F ` A ) ) = X /\ ( E ` ( F ` B ) ) = Y ) -> X =/= Y ) ) |