This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2wlklem | |- ( A. k e. { 0 , 1 } ( E ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( E ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( E ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | |- 0 e. _V |
|
| 2 | 1ex | |- 1 e. _V |
|
| 3 | 2fveq3 | |- ( k = 0 -> ( E ` ( F ` k ) ) = ( E ` ( F ` 0 ) ) ) |
|
| 4 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 5 | fv0p1e1 | |- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
|
| 6 | 4 5 | preq12d | |- ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 7 | 3 6 | eqeq12d | |- ( k = 0 -> ( ( E ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( E ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 8 | 2fveq3 | |- ( k = 1 -> ( E ` ( F ` k ) ) = ( E ` ( F ` 1 ) ) ) |
|
| 9 | fveq2 | |- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
|
| 10 | oveq1 | |- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
|
| 11 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 12 | 10 11 | eqtrdi | |- ( k = 1 -> ( k + 1 ) = 2 ) |
| 13 | 12 | fveq2d | |- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
| 14 | 9 13 | preq12d | |- ( k = 1 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 15 | 8 14 | eqeq12d | |- ( k = 1 -> ( ( E ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( E ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 16 | 1 2 7 15 | ralpr | |- ( A. k e. { 0 , 1 } ( E ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( E ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( E ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |