This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgr2pthlem.v | |- V = ( Vtx ` G ) |
|
| usgr2pthlem.i | |- I = ( iEdg ` G ) |
||
| Assertion | usgr2pth | |- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2pthlem.v | |- V = ( Vtx ` G ) |
|
| 2 | usgr2pthlem.i | |- I = ( iEdg ` G ) |
|
| 3 | usgr2pthspth | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Paths ` G ) P <-> F ( SPaths ` G ) P ) ) |
|
| 4 | usgrupgr | |- ( G e. USGraph -> G e. UPGraph ) |
|
| 5 | 4 | adantr | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> G e. UPGraph ) |
| 6 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 7 | 6 | a1i | |- ( G e. UPGraph -> ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) ) |
| 8 | 1 2 | upgrf1istrl | |- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 9 | 8 | anbi1d | |- ( G e. UPGraph -> ( ( F ( Trails ` G ) P /\ Fun `' P ) <-> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) ) |
| 10 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
|
| 11 | f1eq2 | |- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
|
| 12 | 10 11 | syl | |- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 13 | 12 | biimpd | |- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 14 | 13 | adantl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 15 | 14 | com12 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 17 | 16 | ad2antrl | |- ( ( G e. UPGraph /\ ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 18 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) ) |
|
| 19 | 18 | feq2d | |- ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 2 ) --> V ) ) |
| 20 | df-f1 | |- ( P : ( 0 ... 2 ) -1-1-> V <-> ( P : ( 0 ... 2 ) --> V /\ Fun `' P ) ) |
|
| 21 | 20 | simplbi2 | |- ( P : ( 0 ... 2 ) --> V -> ( Fun `' P -> P : ( 0 ... 2 ) -1-1-> V ) ) |
| 22 | 21 | a1i | |- ( ( # ` F ) = 2 -> ( P : ( 0 ... 2 ) --> V -> ( Fun `' P -> P : ( 0 ... 2 ) -1-1-> V ) ) ) |
| 23 | 19 22 | sylbid | |- ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( Fun `' P -> P : ( 0 ... 2 ) -1-1-> V ) ) ) |
| 24 | 23 | adantl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( Fun `' P -> P : ( 0 ... 2 ) -1-1-> V ) ) ) |
| 25 | 24 | com3l | |- ( P : ( 0 ... ( # ` F ) ) --> V -> ( Fun `' P -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> P : ( 0 ... 2 ) -1-1-> V ) ) ) |
| 26 | 25 | 3ad2ant2 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( Fun `' P -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> P : ( 0 ... 2 ) -1-1-> V ) ) ) |
| 27 | 26 | imp | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> P : ( 0 ... 2 ) -1-1-> V ) ) |
| 28 | 27 | adantl | |- ( ( G e. UPGraph /\ ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> P : ( 0 ... 2 ) -1-1-> V ) ) |
| 29 | 1 2 | usgr2pthlem | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 30 | 29 | ad2antrl | |- ( ( G e. UPGraph /\ ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 31 | 17 28 30 | 3jcad | |- ( ( G e. UPGraph /\ ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 32 | 31 | ex | |- ( G e. UPGraph -> ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 33 | 9 32 | sylbid | |- ( G e. UPGraph -> ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 34 | 7 33 | sylbid | |- ( G e. UPGraph -> ( F ( SPaths ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 35 | 34 | com23 | |- ( G e. UPGraph -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( SPaths ` G ) P -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 36 | 5 35 | mpcom | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( SPaths ` G ) P -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 37 | 3 36 | sylbid | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( F ( Paths ` G ) P -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 38 | 37 | ex | |- ( G e. USGraph -> ( ( # ` F ) = 2 -> ( F ( Paths ` G ) P -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 39 | 38 | impcomd | |- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) -> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 40 | 2nn0 | |- 2 e. NN0 |
|
| 41 | f1f | |- ( F : ( 0 ..^ 2 ) -1-1-> dom I -> F : ( 0 ..^ 2 ) --> dom I ) |
|
| 42 | fnfzo0hash | |- ( ( 2 e. NN0 /\ F : ( 0 ..^ 2 ) --> dom I ) -> ( # ` F ) = 2 ) |
|
| 43 | 40 41 42 | sylancr | |- ( F : ( 0 ..^ 2 ) -1-1-> dom I -> ( # ` F ) = 2 ) |
| 44 | oveq2 | |- ( 2 = ( # ` F ) -> ( 0 ..^ 2 ) = ( 0 ..^ ( # ` F ) ) ) |
|
| 45 | 44 | eqcoms | |- ( ( # ` F ) = 2 -> ( 0 ..^ 2 ) = ( 0 ..^ ( # ` F ) ) ) |
| 46 | f1eq2 | |- ( ( 0 ..^ 2 ) = ( 0 ..^ ( # ` F ) ) -> ( F : ( 0 ..^ 2 ) -1-1-> dom I <-> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) ) |
|
| 47 | 45 46 | syl | |- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ 2 ) -1-1-> dom I <-> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) ) |
| 48 | 47 | biimpd | |- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) ) |
| 49 | 48 | imp | |- ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 50 | 49 | adantr | |- ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 51 | 50 | ad2antrr | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 52 | f1f | |- ( P : ( 0 ... 2 ) -1-1-> V -> P : ( 0 ... 2 ) --> V ) |
|
| 53 | oveq2 | |- ( 2 = ( # ` F ) -> ( 0 ... 2 ) = ( 0 ... ( # ` F ) ) ) |
|
| 54 | 53 | eqcoms | |- ( ( # ` F ) = 2 -> ( 0 ... 2 ) = ( 0 ... ( # ` F ) ) ) |
| 55 | 54 | adantr | |- ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) -> ( 0 ... 2 ) = ( 0 ... ( # ` F ) ) ) |
| 56 | 55 | feq2d | |- ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) -> ( P : ( 0 ... 2 ) --> V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 57 | 52 56 | imbitrid | |- ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) -> ( P : ( 0 ... 2 ) -1-1-> V -> P : ( 0 ... ( # ` F ) ) --> V ) ) |
| 58 | 57 | imp | |- ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 59 | 58 | ad2antrr | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 60 | eqcom | |- ( ( P ` 0 ) = x <-> x = ( P ` 0 ) ) |
|
| 61 | 60 | biimpi | |- ( ( P ` 0 ) = x -> x = ( P ` 0 ) ) |
| 62 | 61 | 3ad2ant1 | |- ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> x = ( P ` 0 ) ) |
| 63 | eqcom | |- ( ( P ` 1 ) = y <-> y = ( P ` 1 ) ) |
|
| 64 | 63 | biimpi | |- ( ( P ` 1 ) = y -> y = ( P ` 1 ) ) |
| 65 | 64 | 3ad2ant2 | |- ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> y = ( P ` 1 ) ) |
| 66 | 62 65 | preq12d | |- ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> { x , y } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 67 | 66 | eqeq2d | |- ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> ( ( I ` ( F ` 0 ) ) = { x , y } <-> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 68 | 67 | biimpcd | |- ( ( I ` ( F ` 0 ) ) = { x , y } -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 69 | 68 | adantr | |- ( ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 70 | 69 | impcom | |- ( ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 71 | eqcom | |- ( ( P ` 2 ) = z <-> z = ( P ` 2 ) ) |
|
| 72 | 71 | biimpi | |- ( ( P ` 2 ) = z -> z = ( P ` 2 ) ) |
| 73 | 72 | 3ad2ant3 | |- ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> z = ( P ` 2 ) ) |
| 74 | 65 73 | preq12d | |- ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> { y , z } = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 75 | 74 | eqeq2d | |- ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> ( ( I ` ( F ` 1 ) ) = { y , z } <-> ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 76 | 75 | biimpcd | |- ( ( I ` ( F ` 1 ) ) = { y , z } -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 77 | 76 | adantl | |- ( ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) -> ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 78 | 77 | impcom | |- ( ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) |
| 79 | 70 78 | jca | |- ( ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 80 | 79 | rexlimivw | |- ( E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 81 | 80 | rexlimivw | |- ( E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 82 | 81 | rexlimivw | |- ( E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 83 | 82 | a1i13 | |- ( ( # ` F ) = 2 -> ( E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( G e. USGraph -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
| 84 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 85 | 10 84 | eqtrdi | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
| 86 | 85 | raleqdv | |- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. { 0 , 1 } ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 87 | 2wlklem | |- ( A. i e. { 0 , 1 } ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 88 | 86 87 | bitrdi | |- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
| 89 | 88 | imbi2d | |- ( ( # ` F ) = 2 -> ( ( G e. USGraph -> A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( G e. USGraph -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
| 90 | 83 89 | sylibrd | |- ( ( # ` F ) = 2 -> ( E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( G e. USGraph -> A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 91 | 90 | ad2antrr | |- ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) -> ( E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( G e. USGraph -> A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 92 | 91 | imp | |- ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) -> ( G e. USGraph -> A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 93 | 92 | imp | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 94 | 51 59 93 | 3jca | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 95 | 20 | simprbi | |- ( P : ( 0 ... 2 ) -1-1-> V -> Fun `' P ) |
| 96 | 95 | adantl | |- ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) -> Fun `' P ) |
| 97 | 96 | ad2antrr | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> Fun `' P ) |
| 98 | 94 97 | jca | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) |
| 99 | 7 9 | bitrd | |- ( G e. UPGraph -> ( F ( SPaths ` G ) P <-> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) ) |
| 100 | 4 99 | syl | |- ( G e. USGraph -> ( F ( SPaths ` G ) P <-> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) ) |
| 101 | 100 | adantl | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> ( F ( SPaths ` G ) P <-> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ Fun `' P ) ) ) |
| 102 | 98 101 | mpbird | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> F ( SPaths ` G ) P ) |
| 103 | simpr | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> G e. USGraph ) |
|
| 104 | simp-4l | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> ( # ` F ) = 2 ) |
|
| 105 | 103 104 3 | syl2anc | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> ( F ( Paths ` G ) P <-> F ( SPaths ` G ) P ) ) |
| 106 | 102 105 | mpbird | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> F ( Paths ` G ) P ) |
| 107 | 106 104 | jca | |- ( ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) /\ G e. USGraph ) -> ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) ) |
| 108 | 107 | ex | |- ( ( ( ( ( # ` F ) = 2 /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ P : ( 0 ... 2 ) -1-1-> V ) /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) -> ( G e. USGraph -> ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) ) ) |
| 109 | 108 | exp41 | |- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> ( P : ( 0 ... 2 ) -1-1-> V -> ( E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( G e. USGraph -> ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) ) ) ) ) ) |
| 110 | 43 109 | mpcom | |- ( F : ( 0 ..^ 2 ) -1-1-> dom I -> ( P : ( 0 ... 2 ) -1-1-> V -> ( E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) -> ( G e. USGraph -> ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) ) ) ) ) |
| 111 | 110 | 3imp | |- ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) -> ( G e. USGraph -> ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) ) ) |
| 112 | 111 | com12 | |- ( G e. USGraph -> ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) -> ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) ) ) |
| 113 | 39 112 | impbid | |- ( G e. USGraph -> ( ( F ( Paths ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ P : ( 0 ... 2 ) -1-1-> V /\ E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |