This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism between graphs preserves edges, i.e. if there is an edge in one graph connecting vertices then there is an edge in the other graph connecting the corresponding vertices. (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrimedgi.e | |- E = ( Edg ` G ) |
|
| uhgrimedgi.d | |- D = ( Edg ` H ) |
||
| Assertion | uhgrimedgi | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( F e. ( G GraphIso H ) /\ K e. E ) ) -> ( F " K ) e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimedgi.e | |- E = ( Edg ` G ) |
|
| 2 | uhgrimedgi.d | |- D = ( Edg ` H ) |
|
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 7 | 3 4 5 6 | grimprop | |- ( F e. ( G GraphIso H ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 8 | 1 | eleq2i | |- ( K e. E <-> K e. ( Edg ` G ) ) |
| 9 | 5 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 10 | 5 | edgiedgb | |- ( Fun ( iEdg ` G ) -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 11 | 9 10 | syl | |- ( G e. UHGraph -> ( K e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 12 | 8 11 | bitrid | |- ( G e. UHGraph -> ( K e. E <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 13 | 12 | adantr | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E <-> E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) ) ) |
| 14 | simplr | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> k e. dom ( iEdg ` G ) ) |
|
| 15 | 2fveq3 | |- ( i = k -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) ) |
|
| 16 | fveq2 | |- ( i = k -> ( ( iEdg ` G ) ` i ) = ( ( iEdg ` G ) ` k ) ) |
|
| 17 | 16 | imaeq2d | |- ( i = k -> ( F " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
| 18 | 15 17 | eqeq12d | |- ( i = k -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 19 | 18 | rspcv | |- ( k e. dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 20 | 14 19 | syl | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) ) ) |
| 21 | 6 | uhgrfun | |- ( H e. UHGraph -> Fun ( iEdg ` H ) ) |
| 22 | 21 | ad3antlr | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> Fun ( iEdg ` H ) ) |
| 23 | f1of | |- ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
|
| 24 | 23 | adantl | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> j : dom ( iEdg ` G ) --> dom ( iEdg ` H ) ) |
| 25 | 14 | adantr | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> k e. dom ( iEdg ` G ) ) |
| 26 | 24 25 | ffvelcdmd | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( j ` k ) e. dom ( iEdg ` H ) ) |
| 27 | 6 | iedgedg | |- ( ( Fun ( iEdg ` H ) /\ ( j ` k ) e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 28 | 22 26 27 | syl2an2r | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. ( Edg ` H ) ) |
| 29 | 28 2 | eleqtrrdi | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) |
| 30 | eleq1 | |- ( ( F " ( ( iEdg ` G ) ` k ) ) = ( ( iEdg ` H ) ` ( j ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) ) |
|
| 31 | 30 | eqcoms | |- ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( ( F " ( ( iEdg ` G ) ` k ) ) e. D <-> ( ( iEdg ` H ) ` ( j ` k ) ) e. D ) ) |
| 32 | 29 31 | syl5ibrcom | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) /\ j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 33 | 32 | ex | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( ( ( iEdg ` H ) ` ( j ` k ) ) = ( F " ( ( iEdg ` G ) ` k ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 34 | 20 33 | syl5d | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 35 | 34 | impd | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 36 | 35 | ex | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 37 | 36 | adantr | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) ) |
| 38 | 37 | 3imp | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) |
| 39 | imaeq2 | |- ( K = ( ( iEdg ` G ) ` k ) -> ( F " K ) = ( F " ( ( iEdg ` G ) ` k ) ) ) |
|
| 40 | 39 | eleq1d | |- ( K = ( ( iEdg ` G ) ` k ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 41 | 40 | adantl | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 42 | 41 | 3ad2ant1 | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( F " K ) e. D <-> ( F " ( ( iEdg ` G ) ` k ) ) e. D ) ) |
| 43 | 38 42 | mpbird | |- ( ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " K ) e. D ) |
| 44 | 43 | 3exp | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) /\ K = ( ( iEdg ` G ) ` k ) ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) |
| 45 | 44 | ex | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ k e. dom ( iEdg ` G ) ) -> ( K = ( ( iEdg ` G ) ` k ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) ) |
| 46 | 45 | rexlimdva | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( E. k e. dom ( iEdg ` G ) K = ( ( iEdg ` G ) ` k ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) ) |
| 47 | 13 46 | sylbid | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) ) |
| 48 | 47 | imp | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) ) |
| 49 | 48 | imp | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) |
| 50 | 49 | exlimdv | |- ( ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) /\ F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( F " K ) e. D ) ) |
| 51 | 50 | expimpd | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( F " K ) e. D ) ) |
| 52 | 7 51 | syl5 | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ K e. E ) -> ( F e. ( G GraphIso H ) -> ( F " K ) e. D ) ) |
| 53 | 52 | ex | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( K e. E -> ( F e. ( G GraphIso H ) -> ( F " K ) e. D ) ) ) |
| 54 | 53 | impcomd | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( ( F e. ( G GraphIso H ) /\ K e. E ) -> ( F " K ) e. D ) ) |
| 55 | 54 | imp | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ ( F e. ( G GraphIso H ) /\ K e. E ) ) -> ( F " K ) e. D ) |