This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 10-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isupgr.v | |- V = ( Vtx ` G ) |
|
| isupgr.e | |- E = ( iEdg ` G ) |
||
| Assertion | upgrex | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x e. V E. y e. V ( E ` F ) = { x , y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isupgr.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | upgrn0 | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) =/= (/) ) |
| 4 | n0 | |- ( ( E ` F ) =/= (/) <-> E. x x e. ( E ` F ) ) |
|
| 5 | 3 4 | sylib | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x x e. ( E ` F ) ) |
| 6 | simp1 | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> G e. UPGraph ) |
|
| 7 | fndm | |- ( E Fn A -> dom E = A ) |
|
| 8 | 7 | eqcomd | |- ( E Fn A -> A = dom E ) |
| 9 | 8 | eleq2d | |- ( E Fn A -> ( F e. A <-> F e. dom E ) ) |
| 10 | 9 | biimpd | |- ( E Fn A -> ( F e. A -> F e. dom E ) ) |
| 11 | 10 | a1i | |- ( G e. UPGraph -> ( E Fn A -> ( F e. A -> F e. dom E ) ) ) |
| 12 | 11 | 3imp | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> F e. dom E ) |
| 13 | 1 2 | upgrss | |- ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) C_ V ) |
| 14 | 6 12 13 | syl2anc | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) C_ V ) |
| 15 | 14 | sselda | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> x e. V ) |
| 16 | 15 | adantr | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> x e. V ) |
| 17 | simpr | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( ( E ` F ) \ { x } ) = (/) ) |
|
| 18 | ssdif0 | |- ( ( E ` F ) C_ { x } <-> ( ( E ` F ) \ { x } ) = (/) ) |
|
| 19 | 17 18 | sylibr | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( E ` F ) C_ { x } ) |
| 20 | simpr | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> x e. ( E ` F ) ) |
|
| 21 | 20 | snssd | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> { x } C_ ( E ` F ) ) |
| 22 | 21 | adantr | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> { x } C_ ( E ` F ) ) |
| 23 | 19 22 | eqssd | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( E ` F ) = { x } ) |
| 24 | preq2 | |- ( y = x -> { x , y } = { x , x } ) |
|
| 25 | dfsn2 | |- { x } = { x , x } |
|
| 26 | 24 25 | eqtr4di | |- ( y = x -> { x , y } = { x } ) |
| 27 | 26 | rspceeqv | |- ( ( x e. V /\ ( E ` F ) = { x } ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 28 | 16 23 27 | syl2anc | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 29 | n0 | |- ( ( ( E ` F ) \ { x } ) =/= (/) <-> E. y y e. ( ( E ` F ) \ { x } ) ) |
|
| 30 | 14 | adantr | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) C_ V ) |
| 31 | simprr | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. ( ( E ` F ) \ { x } ) ) |
|
| 32 | 31 | eldifad | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. ( E ` F ) ) |
| 33 | 30 32 | sseldd | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. V ) |
| 34 | 1 2 | upgrfi | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. Fin ) |
| 35 | 34 | adantr | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) e. Fin ) |
| 36 | simprl | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> x e. ( E ` F ) ) |
|
| 37 | 36 32 | prssd | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } C_ ( E ` F ) ) |
| 38 | fvex | |- ( E ` F ) e. _V |
|
| 39 | ssdomg | |- ( ( E ` F ) e. _V -> ( { x , y } C_ ( E ` F ) -> { x , y } ~<_ ( E ` F ) ) ) |
|
| 40 | 38 37 39 | mpsyl | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } ~<_ ( E ` F ) ) |
| 41 | 1 2 | upgrle | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) |
| 42 | 41 | adantr | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` ( E ` F ) ) <_ 2 ) |
| 43 | eldifsni | |- ( y e. ( ( E ` F ) \ { x } ) -> y =/= x ) |
|
| 44 | 43 | ad2antll | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y =/= x ) |
| 45 | 44 | necomd | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> x =/= y ) |
| 46 | hashprg | |- ( ( x e. _V /\ y e. _V ) -> ( x =/= y <-> ( # ` { x , y } ) = 2 ) ) |
|
| 47 | 46 | el2v | |- ( x =/= y <-> ( # ` { x , y } ) = 2 ) |
| 48 | 45 47 | sylib | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` { x , y } ) = 2 ) |
| 49 | 42 48 | breqtrrd | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) ) |
| 50 | prfi | |- { x , y } e. Fin |
|
| 51 | hashdom | |- ( ( ( E ` F ) e. Fin /\ { x , y } e. Fin ) -> ( ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) <-> ( E ` F ) ~<_ { x , y } ) ) |
|
| 52 | 35 50 51 | sylancl | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) <-> ( E ` F ) ~<_ { x , y } ) ) |
| 53 | 49 52 | mpbid | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) ~<_ { x , y } ) |
| 54 | sbth | |- ( ( { x , y } ~<_ ( E ` F ) /\ ( E ` F ) ~<_ { x , y } ) -> { x , y } ~~ ( E ` F ) ) |
|
| 55 | 40 53 54 | syl2anc | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } ~~ ( E ` F ) ) |
| 56 | fisseneq | |- ( ( ( E ` F ) e. Fin /\ { x , y } C_ ( E ` F ) /\ { x , y } ~~ ( E ` F ) ) -> { x , y } = ( E ` F ) ) |
|
| 57 | 35 37 55 56 | syl3anc | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } = ( E ` F ) ) |
| 58 | 57 | eqcomd | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) = { x , y } ) |
| 59 | 33 58 | jca | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( y e. V /\ ( E ` F ) = { x , y } ) ) |
| 60 | 59 | expr | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( y e. ( ( E ` F ) \ { x } ) -> ( y e. V /\ ( E ` F ) = { x , y } ) ) ) |
| 61 | 60 | eximdv | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( E. y y e. ( ( E ` F ) \ { x } ) -> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) ) |
| 62 | 61 | imp | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ E. y y e. ( ( E ` F ) \ { x } ) ) -> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) |
| 63 | df-rex | |- ( E. y e. V ( E ` F ) = { x , y } <-> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) |
|
| 64 | 62 63 | sylibr | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ E. y y e. ( ( E ` F ) \ { x } ) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 65 | 29 64 | sylan2b | |- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) =/= (/) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 66 | 28 65 | pm2.61dane | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 67 | 15 66 | jca | |- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) |
| 68 | 67 | ex | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( x e. ( E ` F ) -> ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) ) |
| 69 | 68 | eximdv | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E. x x e. ( E ` F ) -> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) ) |
| 70 | 5 69 | mpd | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) |
| 71 | df-rex | |- ( E. x e. V E. y e. V ( E ` F ) = { x , y } <-> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) |
|
| 72 | 70 71 | sylibr | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x e. V E. y e. V ( E ` F ) = { x , y } ) |