This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 28-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrbi.x | |- X e. V |
|
| upgrbi.y | |- Y e. V |
||
| Assertion | upgrbi | |- { X , Y } e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrbi.x | |- X e. V |
|
| 2 | upgrbi.y | |- Y e. V |
|
| 3 | prssi | |- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
|
| 4 | 1 2 3 | mp2an | |- { X , Y } C_ V |
| 5 | prex | |- { X , Y } e. _V |
|
| 6 | 5 | elpw | |- ( { X , Y } e. ~P V <-> { X , Y } C_ V ) |
| 7 | 4 6 | mpbir | |- { X , Y } e. ~P V |
| 8 | 1 | elexi | |- X e. _V |
| 9 | 8 | prnz | |- { X , Y } =/= (/) |
| 10 | eldifsn | |- ( { X , Y } e. ( ~P V \ { (/) } ) <-> ( { X , Y } e. ~P V /\ { X , Y } =/= (/) ) ) |
|
| 11 | 7 9 10 | mpbir2an | |- { X , Y } e. ( ~P V \ { (/) } ) |
| 12 | hashprlei | |- ( { X , Y } e. Fin /\ ( # ` { X , Y } ) <_ 2 ) |
|
| 13 | 12 | simpri | |- ( # ` { X , Y } ) <_ 2 |
| 14 | fveq2 | |- ( x = { X , Y } -> ( # ` x ) = ( # ` { X , Y } ) ) |
|
| 15 | 14 | breq1d | |- ( x = { X , Y } -> ( ( # ` x ) <_ 2 <-> ( # ` { X , Y } ) <_ 2 ) ) |
| 16 | 15 | elrab | |- ( { X , Y } e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( { X , Y } e. ( ~P V \ { (/) } ) /\ ( # ` { X , Y } ) <_ 2 ) ) |
| 17 | 11 13 16 | mpbir2an | |- { X , Y } e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |