This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 10-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isupgr.v | |- V = ( Vtx ` G ) |
|
| isupgr.e | |- E = ( iEdg ` G ) |
||
| Assertion | upgrle | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isupgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isupgr.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | upgrfn | |- ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 4 | 3 | ffvelcdmda | |- ( ( ( G e. UPGraph /\ E Fn A ) /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 5 | 4 | 3impa | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 6 | fveq2 | |- ( x = ( E ` F ) -> ( # ` x ) = ( # ` ( E ` F ) ) ) |
|
| 7 | 6 | breq1d | |- ( x = ( E ` F ) -> ( ( # ` x ) <_ 2 <-> ( # ` ( E ` F ) ) <_ 2 ) ) |
| 8 | 7 | elrab | |- ( ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( ( E ` F ) e. ( ~P V \ { (/) } ) /\ ( # ` ( E ` F ) ) <_ 2 ) ) |
| 9 | 8 | simprbi | |- ( ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` ( E ` F ) ) <_ 2 ) |
| 10 | 5 9 | syl | |- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) |