This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobffth.b | |- B = ( Base ` D ) |
|
| uobffth.x | |- ( ph -> X e. B ) |
||
| uobffth.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uobffth.g | |- ( ph -> ( K o.func F ) = G ) |
||
| uobffth.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
||
| uobeq.i | |- I = ( idFunc ` D ) |
||
| uobeq.k | |- ( ph -> K e. ( D Full E ) ) |
||
| uobeq.n | |- ( ph -> ( L o.func K ) = I ) |
||
| uobeqw.l | |- ( ph -> L e. ( ( E Full D ) i^i ( E Faith D ) ) ) |
||
| Assertion | uobeqw | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | |- B = ( Base ` D ) |
|
| 2 | uobffth.x | |- ( ph -> X e. B ) |
|
| 3 | uobffth.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 4 | uobffth.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 5 | uobffth.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 6 | uobeq.i | |- I = ( idFunc ` D ) |
|
| 7 | uobeq.k | |- ( ph -> K e. ( D Full E ) ) |
|
| 8 | uobeq.n | |- ( ph -> ( L o.func K ) = I ) |
|
| 9 | uobeqw.l | |- ( ph -> L e. ( ( E Full D ) i^i ( E Faith D ) ) ) |
|
| 10 | 19.42v | |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) |
|
| 11 | fvexd | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) |
|
| 12 | 5 | adantr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 13 | relfunc | |- Rel ( D Func E ) |
|
| 14 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 15 | 14 7 | sselid | |- ( ph -> K e. ( D Func E ) ) |
| 16 | 1st2nd | |- ( ( Rel ( D Func E ) /\ K e. ( D Func E ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
|
| 17 | 13 15 16 | sylancr | |- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 18 | 15 | func1st2nd | |- ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 19 | inss1 | |- ( ( E Full D ) i^i ( E Faith D ) ) C_ ( E Full D ) |
|
| 20 | fullfunc | |- ( E Full D ) C_ ( E Func D ) |
|
| 21 | 19 20 | sstri | |- ( ( E Full D ) i^i ( E Faith D ) ) C_ ( E Func D ) |
| 22 | 21 9 | sselid | |- ( ph -> L e. ( E Func D ) ) |
| 23 | 22 | func1st2nd | |- ( ph -> ( 1st ` L ) ( E Func D ) ( 2nd ` L ) ) |
| 24 | 15 22 | cofu1st2nd | |- ( ph -> ( L o.func K ) = ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 25 | 24 8 | eqtr3d | |- ( ph -> ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) = I ) |
| 26 | 6 18 23 25 | cofidfth | |- ( ph -> ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) ) |
| 27 | df-br | |- ( ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
|
| 28 | 26 27 | sylib | |- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
| 29 | 17 28 | eqeltrd | |- ( ph -> K e. ( D Faith E ) ) |
| 30 | 7 29 | elind | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 32 | 4 | adantr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) |
| 33 | eqidd | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
|
| 34 | simpr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) |
|
| 35 | 12 31 32 33 34 | uptrai | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
| 36 | breq2 | |- ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) |
|
| 37 | 11 35 36 | spcedv | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 38 | 37 | exlimiv | |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 39 | 10 38 | sylbir | |- ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 40 | 19.42v | |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) |
|
| 41 | fvexd | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) e. _V ) |
|
| 42 | 5 | fveq2d | |- ( ph -> ( ( 1st ` L ) ` ( ( 1st ` K ) ` X ) ) = ( ( 1st ` L ) ` Y ) ) |
| 43 | 6 1 2 15 22 8 | cofid1a | |- ( ph -> ( ( 1st ` L ) ` ( ( 1st ` K ) ` X ) ) = X ) |
| 44 | 42 43 | eqtr3d | |- ( ph -> ( ( 1st ` L ) ` Y ) = X ) |
| 45 | 44 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` L ) ` Y ) = X ) |
| 46 | 9 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> L e. ( ( E Full D ) i^i ( E Faith D ) ) ) |
| 47 | 3 15 22 | cofuass | |- ( ph -> ( ( L o.func K ) o.func F ) = ( L o.func ( K o.func F ) ) ) |
| 48 | 8 | oveq1d | |- ( ph -> ( ( L o.func K ) o.func F ) = ( I o.func F ) ) |
| 49 | 3 6 | cofulid | |- ( ph -> ( I o.func F ) = F ) |
| 50 | 48 49 | eqtrd | |- ( ph -> ( ( L o.func K ) o.func F ) = F ) |
| 51 | 4 | oveq2d | |- ( ph -> ( L o.func ( K o.func F ) ) = ( L o.func G ) ) |
| 52 | 47 50 51 | 3eqtr3rd | |- ( ph -> ( L o.func G ) = F ) |
| 53 | 52 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( L o.func G ) = F ) |
| 54 | eqidd | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) = ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) |
|
| 55 | simpr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) |
|
| 56 | 45 46 53 54 55 | uptrai | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) |
| 57 | breq2 | |- ( m = ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( ( Y ( 2nd ` L ) ( ( 1st ` G ) ` z ) ) ` n ) ) ) |
|
| 58 | 41 56 57 | spcedv | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 59 | 58 | exlimiv | |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 60 | 40 59 | sylbir | |- ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 61 | 39 60 | impbida | |- ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) |
| 62 | relup | |- Rel ( F ( C UP D ) X ) |
|
| 63 | releldmb | |- ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) |
|
| 64 | 62 63 | ax-mp | |- ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) |
| 65 | relup | |- Rel ( G ( C UP E ) Y ) |
|
| 66 | releldmb | |- ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) |
|
| 67 | 65 66 | ax-mp | |- ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) |
| 68 | 61 64 67 | 3bitr4g | |- ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) |
| 69 | 68 | eqrdv | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |