This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobffth.b | |- B = ( Base ` D ) |
|
| uobffth.x | |- ( ph -> X e. B ) |
||
| uobffth.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uobffth.g | |- ( ph -> ( K o.func F ) = G ) |
||
| uobffth.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
||
| uobeq.i | |- I = ( idFunc ` D ) |
||
| uobeq.k | |- ( ph -> K e. ( D Full E ) ) |
||
| uobeq.n | |- ( ph -> ( L o.func K ) = I ) |
||
| uobeq.l | |- ( ph -> L e. ( E Func D ) ) |
||
| Assertion | uobeq | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | |- B = ( Base ` D ) |
|
| 2 | uobffth.x | |- ( ph -> X e. B ) |
|
| 3 | uobffth.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 4 | uobffth.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 5 | uobffth.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 6 | uobeq.i | |- I = ( idFunc ` D ) |
|
| 7 | uobeq.k | |- ( ph -> K e. ( D Full E ) ) |
|
| 8 | uobeq.n | |- ( ph -> ( L o.func K ) = I ) |
|
| 9 | uobeq.l | |- ( ph -> L e. ( E Func D ) ) |
|
| 10 | relfunc | |- Rel ( D Func E ) |
|
| 11 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 12 | 11 7 | sselid | |- ( ph -> K e. ( D Func E ) ) |
| 13 | 1st2nd | |- ( ( Rel ( D Func E ) /\ K e. ( D Func E ) ) -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
|
| 14 | 10 12 13 | sylancr | |- ( ph -> K = <. ( 1st ` K ) , ( 2nd ` K ) >. ) |
| 15 | 12 | func1st2nd | |- ( ph -> ( 1st ` K ) ( D Func E ) ( 2nd ` K ) ) |
| 16 | 9 | func1st2nd | |- ( ph -> ( 1st ` L ) ( E Func D ) ( 2nd ` L ) ) |
| 17 | 12 9 | cofu1st2nd | |- ( ph -> ( L o.func K ) = ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) ) |
| 18 | 17 8 | eqtr3d | |- ( ph -> ( <. ( 1st ` L ) , ( 2nd ` L ) >. o.func <. ( 1st ` K ) , ( 2nd ` K ) >. ) = I ) |
| 19 | 6 15 16 18 | cofidfth | |- ( ph -> ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) ) |
| 20 | df-br | |- ( ( 1st ` K ) ( D Faith E ) ( 2nd ` K ) <-> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
|
| 21 | 19 20 | sylib | |- ( ph -> <. ( 1st ` K ) , ( 2nd ` K ) >. e. ( D Faith E ) ) |
| 22 | 14 21 | eqeltrd | |- ( ph -> K e. ( D Faith E ) ) |
| 23 | 7 22 | elind | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 24 | 1 2 3 4 5 23 | uobffth | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |