This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobffth.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| uobffth.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| uobffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| uobffth.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | ||
| uobffth.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | ||
| uobeq.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | ||
| uobeq.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) | ||
| uobeq.n | ⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = 𝐼 ) | ||
| uobeqw.l | ⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) ) | ||
| Assertion | uobeqw | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | uobffth.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | uobffth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 4 | uobffth.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | |
| 5 | uobffth.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | |
| 6 | uobeq.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 7 | uobeq.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) | |
| 8 | uobeq.n | ⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = 𝐼 ) | |
| 9 | uobeqw.l | ⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) ) | |
| 10 | 19.42v | ⊢ ( ∃ 𝑚 ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ↔ ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ) | |
| 11 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ∈ V ) | |
| 12 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 13 | relfunc | ⊢ Rel ( 𝐷 Func 𝐸 ) | |
| 14 | fullfunc | ⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) | |
| 15 | 14 7 | sselid | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| 16 | 1st2nd | ⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) | |
| 17 | 13 15 16 | sylancr | ⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 18 | 15 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 19 | inss1 | ⊢ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) ⊆ ( 𝐸 Full 𝐷 ) | |
| 20 | fullfunc | ⊢ ( 𝐸 Full 𝐷 ) ⊆ ( 𝐸 Func 𝐷 ) | |
| 21 | 19 20 | sstri | ⊢ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) ⊆ ( 𝐸 Func 𝐷 ) |
| 22 | 21 9 | sselid | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐸 Func 𝐷 ) ) |
| 23 | 22 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐸 Func 𝐷 ) ( 2nd ‘ 𝐿 ) ) |
| 24 | 15 22 | cofu1st2nd | ⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ∘func 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) ) |
| 25 | 24 8 | eqtr3d | ⊢ ( 𝜑 → ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ∘func 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) = 𝐼 ) |
| 26 | 6 18 23 25 | cofidfth | ⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 27 | df-br | ⊢ ( ( 1st ‘ 𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐾 ) ↔ 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) | |
| 28 | 26 27 | sylib | ⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 29 | 17 28 | eqeltrd | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 30 | 7 29 | elind | ⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 32 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 33 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) | |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) | |
| 35 | 12 31 32 33 34 | uptrai | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) |
| 36 | breq2 | ⊢ ( 𝑛 = ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) → ( 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ↔ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd ‘ 𝐾 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) ) | |
| 37 | 11 35 36 | spcedv | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 38 | 37 | exlimiv | ⊢ ( ∃ 𝑚 ( 𝜑 ∧ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 39 | 10 38 | sylbir | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 40 | 19.42v | ⊢ ( ∃ 𝑛 ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ↔ ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) | |
| 41 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 𝑌 ( 2nd ‘ 𝐿 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ∈ V ) | |
| 42 | 5 | fveq2d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) |
| 43 | 6 1 2 15 22 8 | cofid1a | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 44 | 42 43 | eqtr3d | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) = 𝑋 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) = 𝑋 ) |
| 46 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐿 ∈ ( ( 𝐸 Full 𝐷 ) ∩ ( 𝐸 Faith 𝐷 ) ) ) |
| 47 | 3 15 22 | cofuass | ⊢ ( 𝜑 → ( ( 𝐿 ∘func 𝐾 ) ∘func 𝐹 ) = ( 𝐿 ∘func ( 𝐾 ∘func 𝐹 ) ) ) |
| 48 | 8 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐿 ∘func 𝐾 ) ∘func 𝐹 ) = ( 𝐼 ∘func 𝐹 ) ) |
| 49 | 3 6 | cofulid | ⊢ ( 𝜑 → ( 𝐼 ∘func 𝐹 ) = 𝐹 ) |
| 50 | 48 49 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐿 ∘func 𝐾 ) ∘func 𝐹 ) = 𝐹 ) |
| 51 | 4 | oveq2d | ⊢ ( 𝜑 → ( 𝐿 ∘func ( 𝐾 ∘func 𝐹 ) ) = ( 𝐿 ∘func 𝐺 ) ) |
| 52 | 47 50 51 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝐿 ∘func 𝐺 ) = 𝐹 ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( 𝐿 ∘func 𝐺 ) = 𝐹 ) |
| 54 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 𝑌 ( 2nd ‘ 𝐿 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ( 𝑌 ( 2nd ‘ 𝐿 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) | |
| 55 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) | |
| 56 | 45 46 53 54 55 | uptrai | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ( 𝑌 ( 2nd ‘ 𝐿 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 57 | breq2 | ⊢ ( 𝑚 = ( ( 𝑌 ( 2nd ‘ 𝐿 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) → ( 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ( 𝑌 ( 2nd ‘ 𝐿 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) ) | |
| 58 | 41 56 57 | spcedv | ⊢ ( ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 59 | 58 | exlimiv | ⊢ ( ∃ 𝑛 ( 𝜑 ∧ 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 60 | 40 59 | sylbir | ⊢ ( ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 61 | 39 60 | impbida | ⊢ ( 𝜑 → ( ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) |
| 62 | relup | ⊢ Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) | |
| 63 | releldmb | ⊢ ( Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ) | |
| 64 | 62 63 | ax-mp | ⊢ ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) |
| 65 | relup | ⊢ Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) | |
| 66 | releldmb | ⊢ ( Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) → ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ) | |
| 67 | 65 66 | ax-mp | ⊢ ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) |
| 68 | 61 64 67 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) ) |
| 69 | 68 | eqrdv | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |