This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If " F is a section of G " in a category of small categories (in a universe), then F is faithful. Combined with cofidf1 , this theorem proves that F is an embedding (a faithful functor injective on objects, remark 3.28(1) of Adamek p. 34). (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidfth.i | |- I = ( idFunc ` D ) |
|
| cofidfth.f | |- ( ph -> F ( D Func E ) G ) |
||
| cofidfth.k | |- ( ph -> K ( E Func D ) L ) |
||
| cofidfth.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
||
| Assertion | cofidfth | |- ( ph -> F ( D Faith E ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidfth.i | |- I = ( idFunc ` D ) |
|
| 2 | cofidfth.f | |- ( ph -> F ( D Func E ) G ) |
|
| 3 | cofidfth.k | |- ( ph -> K ( E Func D ) L ) |
|
| 4 | cofidfth.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
|
| 5 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 6 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> F ( D Func E ) G ) |
| 7 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> K ( E Func D ) L ) |
| 8 | 4 | adantr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( <. K , L >. o.func <. F , G >. ) = I ) |
| 9 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 10 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 11 | simprl | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` D ) ) |
|
| 12 | simprr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
|
| 13 | 1 5 6 7 8 9 10 11 12 | cofidf2 | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( x G y ) : ( x ( Hom ` D ) y ) -1-1-> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) /\ ( ( F ` x ) L ( F ` y ) ) : ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) -onto-> ( x ( Hom ` D ) y ) ) ) |
| 14 | 13 | simpld | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x G y ) : ( x ( Hom ` D ) y ) -1-1-> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
| 15 | 14 | ralrimivva | |- ( ph -> A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x G y ) : ( x ( Hom ` D ) y ) -1-1-> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
| 16 | 5 9 10 | isfth2 | |- ( F ( D Faith E ) G <-> ( F ( D Func E ) G /\ A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x G y ) : ( x ( Hom ` D ) y ) -1-1-> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) |
| 17 | 2 15 16 | sylanbrc | |- ( ph -> F ( D Faith E ) G ) |