This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofulid.g | |- ( ph -> F e. ( C Func D ) ) |
|
| cofulid.1 | |- I = ( idFunc ` D ) |
||
| Assertion | cofulid | |- ( ph -> ( I o.func F ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofulid.g | |- ( ph -> F e. ( C Func D ) ) |
|
| 2 | cofulid.1 | |- I = ( idFunc ` D ) |
|
| 3 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 4 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 6 | 5 | simprd | |- ( ph -> D e. Cat ) |
| 7 | 2 3 6 | idfu1st | |- ( ph -> ( 1st ` I ) = ( _I |` ( Base ` D ) ) ) |
| 8 | 7 | coeq1d | |- ( ph -> ( ( 1st ` I ) o. ( 1st ` F ) ) = ( ( _I |` ( Base ` D ) ) o. ( 1st ` F ) ) ) |
| 9 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 10 | relfunc | |- Rel ( C Func D ) |
|
| 11 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 12 | 10 1 11 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 13 | 9 3 12 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 14 | fcoi2 | |- ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) -> ( ( _I |` ( Base ` D ) ) o. ( 1st ` F ) ) = ( 1st ` F ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( ( _I |` ( Base ` D ) ) o. ( 1st ` F ) ) = ( 1st ` F ) ) |
| 16 | 8 15 | eqtrd | |- ( ph -> ( ( 1st ` I ) o. ( 1st ` F ) ) = ( 1st ` F ) ) |
| 17 | 6 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> D e. Cat ) |
| 18 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 19 | 13 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 20 | 19 | 3adant3 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 21 | 13 | ffvelcdmda | |- ( ( ph /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 22 | 21 | 3adant2 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 23 | 2 3 17 18 20 22 | idfu2nd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) = ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) ) |
| 24 | 23 | coeq1d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) = ( ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 25 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 26 | 12 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 27 | simp2 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 28 | simp3 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> y e. ( Base ` C ) ) |
|
| 29 | 9 25 18 26 27 28 | funcf2 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 30 | fcoi2 | |- ( ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -> ( ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) o. ( x ( 2nd ` F ) y ) ) = ( x ( 2nd ` F ) y ) ) |
|
| 31 | 29 30 | syl | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( _I |` ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) o. ( x ( 2nd ` F ) y ) ) = ( x ( 2nd ` F ) y ) ) |
| 32 | 24 31 | eqtrd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) = ( x ( 2nd ` F ) y ) ) |
| 33 | 32 | mpoeq3dva | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 34 | 9 12 | funcfn2 | |- ( ph -> ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 35 | fnov | |- ( ( 2nd ` F ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
|
| 36 | 34 35 | sylib | |- ( ph -> ( 2nd ` F ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( 2nd ` F ) y ) ) ) |
| 37 | 33 36 | eqtr4d | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( 2nd ` F ) ) |
| 38 | 16 37 | opeq12d | |- ( ph -> <. ( ( 1st ` I ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 39 | 2 | idfucl | |- ( D e. Cat -> I e. ( D Func D ) ) |
| 40 | 6 39 | syl | |- ( ph -> I e. ( D Func D ) ) |
| 41 | 9 1 40 | cofuval | |- ( ph -> ( I o.func F ) = <. ( ( 1st ` I ) o. ( 1st ` F ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` I ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
| 42 | 1st2nd | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 43 | 10 1 42 | sylancr | |- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 44 | 38 41 43 | 3eqtr4d | |- ( ph -> ( I o.func F ) = F ) |