This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the object part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofid1a.i | |- I = ( idFunc ` D ) |
|
| cofid1a.b | |- B = ( Base ` D ) |
||
| cofid1a.x | |- ( ph -> X e. B ) |
||
| cofid1a.f | |- ( ph -> F e. ( D Func E ) ) |
||
| cofid1a.g | |- ( ph -> G e. ( E Func D ) ) |
||
| cofid1a.o | |- ( ph -> ( G o.func F ) = I ) |
||
| Assertion | cofid1a | |- ( ph -> ( ( 1st ` G ) ` ( ( 1st ` F ) ` X ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1a.i | |- I = ( idFunc ` D ) |
|
| 2 | cofid1a.b | |- B = ( Base ` D ) |
|
| 3 | cofid1a.x | |- ( ph -> X e. B ) |
|
| 4 | cofid1a.f | |- ( ph -> F e. ( D Func E ) ) |
|
| 5 | cofid1a.g | |- ( ph -> G e. ( E Func D ) ) |
|
| 6 | cofid1a.o | |- ( ph -> ( G o.func F ) = I ) |
|
| 7 | 6 | fveq2d | |- ( ph -> ( 1st ` ( G o.func F ) ) = ( 1st ` I ) ) |
| 8 | 7 | fveq1d | |- ( ph -> ( ( 1st ` ( G o.func F ) ) ` X ) = ( ( 1st ` I ) ` X ) ) |
| 9 | 2 4 5 3 | cofu1 | |- ( ph -> ( ( 1st ` ( G o.func F ) ) ` X ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` X ) ) ) |
| 10 | 4 | func1st2nd | |- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 11 | 10 | funcrcl2 | |- ( ph -> D e. Cat ) |
| 12 | 1 2 11 3 | idfu1 | |- ( ph -> ( ( 1st ` I ) ` X ) = X ) |
| 13 | 8 9 12 | 3eqtr3d | |- ( ph -> ( ( 1st ` G ) ` ( ( 1st ` F ) ` X ) ) = X ) |