This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functor composition is associative. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofuass.g | |- ( ph -> G e. ( C Func D ) ) |
|
| cofuass.h | |- ( ph -> H e. ( D Func E ) ) |
||
| cofuass.k | |- ( ph -> K e. ( E Func F ) ) |
||
| Assertion | cofuass | |- ( ph -> ( ( K o.func H ) o.func G ) = ( K o.func ( H o.func G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofuass.g | |- ( ph -> G e. ( C Func D ) ) |
|
| 2 | cofuass.h | |- ( ph -> H e. ( D Func E ) ) |
|
| 3 | cofuass.k | |- ( ph -> K e. ( E Func F ) ) |
|
| 4 | coass | |- ( ( ( 1st ` K ) o. ( 1st ` H ) ) o. ( 1st ` G ) ) = ( ( 1st ` K ) o. ( ( 1st ` H ) o. ( 1st ` G ) ) ) |
|
| 5 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 6 | 5 2 3 | cofu1st | |- ( ph -> ( 1st ` ( K o.func H ) ) = ( ( 1st ` K ) o. ( 1st ` H ) ) ) |
| 7 | 6 | coeq1d | |- ( ph -> ( ( 1st ` ( K o.func H ) ) o. ( 1st ` G ) ) = ( ( ( 1st ` K ) o. ( 1st ` H ) ) o. ( 1st ` G ) ) ) |
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | 8 1 2 | cofu1st | |- ( ph -> ( 1st ` ( H o.func G ) ) = ( ( 1st ` H ) o. ( 1st ` G ) ) ) |
| 10 | 9 | coeq2d | |- ( ph -> ( ( 1st ` K ) o. ( 1st ` ( H o.func G ) ) ) = ( ( 1st ` K ) o. ( ( 1st ` H ) o. ( 1st ` G ) ) ) ) |
| 11 | 4 7 10 | 3eqtr4a | |- ( ph -> ( ( 1st ` ( K o.func H ) ) o. ( 1st ` G ) ) = ( ( 1st ` K ) o. ( 1st ` ( H o.func G ) ) ) ) |
| 12 | coass | |- ( ( ( ( ( 1st ` H ) ` ( ( 1st ` G ) ` x ) ) ( 2nd ` K ) ( ( 1st ` H ) ` ( ( 1st ` G ) ` y ) ) ) o. ( ( ( 1st ` G ) ` x ) ( 2nd ` H ) ( ( 1st ` G ) ` y ) ) ) o. ( x ( 2nd ` G ) y ) ) = ( ( ( ( 1st ` H ) ` ( ( 1st ` G ) ` x ) ) ( 2nd ` K ) ( ( 1st ` H ) ` ( ( 1st ` G ) ` y ) ) ) o. ( ( ( ( 1st ` G ) ` x ) ( 2nd ` H ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) ) |
|
| 13 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> H e. ( D Func E ) ) |
| 14 | 3 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> K e. ( E Func F ) ) |
| 15 | relfunc | |- Rel ( C Func D ) |
|
| 16 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
|
| 17 | 15 1 16 | sylancr | |- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 18 | 17 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 19 | 8 5 18 | funcf1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 20 | simp2 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 21 | 19 20 | ffvelcdmd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 22 | simp3 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> y e. ( Base ` C ) ) |
|
| 23 | 19 22 | ffvelcdmd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` D ) ) |
| 24 | 5 13 14 21 23 | cofu2nd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( 1st ` G ) ` x ) ( 2nd ` ( K o.func H ) ) ( ( 1st ` G ) ` y ) ) = ( ( ( ( 1st ` H ) ` ( ( 1st ` G ) ` x ) ) ( 2nd ` K ) ( ( 1st ` H ) ` ( ( 1st ` G ) ` y ) ) ) o. ( ( ( 1st ` G ) ` x ) ( 2nd ` H ) ( ( 1st ` G ) ` y ) ) ) ) |
| 25 | 24 | coeq1d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` G ) ` x ) ( 2nd ` ( K o.func H ) ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) = ( ( ( ( ( 1st ` H ) ` ( ( 1st ` G ) ` x ) ) ( 2nd ` K ) ( ( 1st ` H ) ` ( ( 1st ` G ) ` y ) ) ) o. ( ( ( 1st ` G ) ` x ) ( 2nd ` H ) ( ( 1st ` G ) ` y ) ) ) o. ( x ( 2nd ` G ) y ) ) ) |
| 26 | 1 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> G e. ( C Func D ) ) |
| 27 | 8 26 13 20 | cofu1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` ( H o.func G ) ) ` x ) = ( ( 1st ` H ) ` ( ( 1st ` G ) ` x ) ) ) |
| 28 | 8 26 13 22 | cofu1 | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( 1st ` ( H o.func G ) ) ` y ) = ( ( 1st ` H ) ` ( ( 1st ` G ) ` y ) ) ) |
| 29 | 27 28 | oveq12d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( 1st ` ( H o.func G ) ) ` x ) ( 2nd ` K ) ( ( 1st ` ( H o.func G ) ) ` y ) ) = ( ( ( 1st ` H ) ` ( ( 1st ` G ) ` x ) ) ( 2nd ` K ) ( ( 1st ` H ) ` ( ( 1st ` G ) ` y ) ) ) ) |
| 30 | 8 26 13 20 22 | cofu2nd | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( x ( 2nd ` ( H o.func G ) ) y ) = ( ( ( ( 1st ` G ) ` x ) ( 2nd ` H ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) ) |
| 31 | 29 30 | coeq12d | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` ( H o.func G ) ) ` x ) ( 2nd ` K ) ( ( 1st ` ( H o.func G ) ) ` y ) ) o. ( x ( 2nd ` ( H o.func G ) ) y ) ) = ( ( ( ( 1st ` H ) ` ( ( 1st ` G ) ` x ) ) ( 2nd ` K ) ( ( 1st ` H ) ` ( ( 1st ` G ) ` y ) ) ) o. ( ( ( ( 1st ` G ) ` x ) ( 2nd ` H ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) ) ) |
| 32 | 12 25 31 | 3eqtr4a | |- ( ( ph /\ x e. ( Base ` C ) /\ y e. ( Base ` C ) ) -> ( ( ( ( 1st ` G ) ` x ) ( 2nd ` ( K o.func H ) ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) = ( ( ( ( 1st ` ( H o.func G ) ) ` x ) ( 2nd ` K ) ( ( 1st ` ( H o.func G ) ) ` y ) ) o. ( x ( 2nd ` ( H o.func G ) ) y ) ) ) |
| 33 | 32 | mpoeq3dva | |- ( ph -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` G ) ` x ) ( 2nd ` ( K o.func H ) ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` ( H o.func G ) ) ` x ) ( 2nd ` K ) ( ( 1st ` ( H o.func G ) ) ` y ) ) o. ( x ( 2nd ` ( H o.func G ) ) y ) ) ) ) |
| 34 | 11 33 | opeq12d | |- ( ph -> <. ( ( 1st ` ( K o.func H ) ) o. ( 1st ` G ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` G ) ` x ) ( 2nd ` ( K o.func H ) ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) ) >. = <. ( ( 1st ` K ) o. ( 1st ` ( H o.func G ) ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` ( H o.func G ) ) ` x ) ( 2nd ` K ) ( ( 1st ` ( H o.func G ) ) ` y ) ) o. ( x ( 2nd ` ( H o.func G ) ) y ) ) ) >. ) |
| 35 | 2 3 | cofucl | |- ( ph -> ( K o.func H ) e. ( D Func F ) ) |
| 36 | 8 1 35 | cofuval | |- ( ph -> ( ( K o.func H ) o.func G ) = <. ( ( 1st ` ( K o.func H ) ) o. ( 1st ` G ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` G ) ` x ) ( 2nd ` ( K o.func H ) ) ( ( 1st ` G ) ` y ) ) o. ( x ( 2nd ` G ) y ) ) ) >. ) |
| 37 | 1 2 | cofucl | |- ( ph -> ( H o.func G ) e. ( C Func E ) ) |
| 38 | 8 37 3 | cofuval | |- ( ph -> ( K o.func ( H o.func G ) ) = <. ( ( 1st ` K ) o. ( 1st ` ( H o.func G ) ) ) , ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( ( ( 1st ` ( H o.func G ) ) ` x ) ( 2nd ` K ) ( ( 1st ` ( H o.func G ) ) ` y ) ) o. ( x ( 2nd ` ( H o.func G ) ) y ) ) ) >. ) |
| 39 | 34 36 38 | 3eqtr4d | |- ( ph -> ( ( K o.func H ) o.func G ) = ( K o.func ( H o.func G ) ) ) |