This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinito4.1 | |- ( ph -> .1. e. TermCat ) |
|
| isinito4.x | |- ( ph -> X e. ( Base ` .1. ) ) |
||
| isinito4.f | |- ( ph -> F e. ( C Func .1. ) ) |
||
| Assertion | isinito4 | |- ( ph -> ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito4.1 | |- ( ph -> .1. e. TermCat ) |
|
| 2 | isinito4.x | |- ( ph -> X e. ( Base ` .1. ) ) |
|
| 3 | isinito4.f | |- ( ph -> F e. ( C Func .1. ) ) |
|
| 4 | eqid | |- ( SetCat ` 1o ) = ( SetCat ` 1o ) |
|
| 5 | eqid | |- ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc C ) ) ` (/) ) = ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc C ) ) ` (/) ) |
|
| 6 | 4 5 | isinito3 | |- ( I e. ( InitO ` C ) <-> I e. dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc C ) ) ` (/) ) ( C UP ( SetCat ` 1o ) ) (/) ) ) |
| 7 | 4 | setc1obas | |- 1o = ( Base ` ( SetCat ` 1o ) ) |
| 8 | eqid | |- ( Base ` .1. ) = ( Base ` .1. ) |
|
| 9 | 0lt1o | |- (/) e. 1o |
|
| 10 | 9 | a1i | |- ( ph -> (/) e. 1o ) |
| 11 | 3 | func1st2nd | |- ( ph -> ( 1st ` F ) ( C Func .1. ) ( 2nd ` F ) ) |
| 12 | 11 | funcrcl2 | |- ( ph -> C e. Cat ) |
| 13 | 4 5 12 | funcsetc1ocl | |- ( ph -> ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc C ) ) ` (/) ) e. ( C Func ( SetCat ` 1o ) ) ) |
| 14 | setc1oterm | |- ( SetCat ` 1o ) e. TermCat |
|
| 15 | 14 | a1i | |- ( ph -> ( SetCat ` 1o ) e. TermCat ) |
| 16 | 7 8 10 2 13 3 15 1 | uobeqterm | |- ( ph -> dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc C ) ) ` (/) ) ( C UP ( SetCat ` 1o ) ) (/) ) = dom ( F ( C UP .1. ) X ) ) |
| 17 | 16 | eleq2d | |- ( ph -> ( I e. dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc C ) ) ` (/) ) ( C UP ( SetCat ` 1o ) ) (/) ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |
| 18 | 6 17 | bitrid | |- ( ph -> ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) X ) ) ) |