This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| termcbas.b | |- B = ( Base ` C ) |
||
| termcbasmo.x | |- ( ph -> X e. B ) |
||
| termcbasmo.y | |- ( ph -> Y e. B ) |
||
| Assertion | termcbasmo | |- ( ph -> X = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termcbas.b | |- B = ( Base ` C ) |
|
| 3 | termcbasmo.x | |- ( ph -> X e. B ) |
|
| 4 | termcbasmo.y | |- ( ph -> Y e. B ) |
|
| 5 | eqeq1 | |- ( x = X -> ( x = y <-> X = y ) ) |
|
| 6 | eqeq2 | |- ( y = Y -> ( X = y <-> X = Y ) ) |
|
| 7 | 1 2 | termcbas | |- ( ph -> E. z B = { z } ) |
| 8 | mosn | |- ( B = { z } -> E* x x e. B ) |
|
| 9 | 8 | exlimiv | |- ( E. z B = { z } -> E* x x e. B ) |
| 10 | 7 9 | syl | |- ( ph -> E* x x e. B ) |
| 11 | moel | |- ( E* x x e. B <-> A. x e. B A. y e. B x = y ) |
|
| 12 | 10 11 | sylib | |- ( ph -> A. x e. B A. y e. B x = y ) |
| 13 | 5 6 12 3 4 | rspc2dv | |- ( ph -> X = Y ) |