This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcciso.c | |- C = ( CatCat ` U ) |
|
| termcciso.b | |- B = ( Base ` C ) |
||
| termcciso.x | |- ( ph -> X e. B ) |
||
| termcciso.y | |- ( ph -> Y e. B ) |
||
| termcciso.t | |- ( ph -> X e. TermCat ) |
||
| Assertion | termcciso | |- ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcciso.c | |- C = ( CatCat ` U ) |
|
| 2 | termcciso.b | |- B = ( Base ` C ) |
|
| 3 | termcciso.x | |- ( ph -> X e. B ) |
|
| 4 | termcciso.y | |- ( ph -> Y e. B ) |
|
| 5 | termcciso.t | |- ( ph -> X e. TermCat ) |
|
| 6 | 1 2 | elbasfv | |- ( X e. B -> U e. _V ) |
| 7 | 3 6 | syl | |- ( ph -> U e. _V ) |
| 8 | 1 | catccat | |- ( U e. _V -> C e. Cat ) |
| 9 | 7 8 | syl | |- ( ph -> C e. Cat ) |
| 10 | 9 | adantr | |- ( ( ph /\ Y e. TermCat ) -> C e. Cat ) |
| 11 | 1 2 7 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 12 | 3 11 | eleqtrd | |- ( ph -> X e. ( U i^i Cat ) ) |
| 13 | 12 | elin1d | |- ( ph -> X e. U ) |
| 14 | 1 7 13 5 | termcterm | |- ( ph -> X e. ( TermO ` C ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ Y e. TermCat ) -> X e. ( TermO ` C ) ) |
| 16 | 7 | adantr | |- ( ( ph /\ Y e. TermCat ) -> U e. _V ) |
| 17 | 4 | adantr | |- ( ( ph /\ Y e. TermCat ) -> Y e. B ) |
| 18 | 11 | adantr | |- ( ( ph /\ Y e. TermCat ) -> B = ( U i^i Cat ) ) |
| 19 | 17 18 | eleqtrd | |- ( ( ph /\ Y e. TermCat ) -> Y e. ( U i^i Cat ) ) |
| 20 | 19 | elin1d | |- ( ( ph /\ Y e. TermCat ) -> Y e. U ) |
| 21 | simpr | |- ( ( ph /\ Y e. TermCat ) -> Y e. TermCat ) |
|
| 22 | 1 16 20 21 | termcterm | |- ( ( ph /\ Y e. TermCat ) -> Y e. ( TermO ` C ) ) |
| 23 | 10 15 22 | termoeu1w | |- ( ( ph /\ Y e. TermCat ) -> X ( ~=c ` C ) Y ) |
| 24 | 13 5 | elind | |- ( ph -> X e. ( U i^i TermCat ) ) |
| 25 | 24 | ne0d | |- ( ph -> ( U i^i TermCat ) =/= (/) ) |
| 26 | 25 | adantr | |- ( ( ph /\ X ( ~=c ` C ) Y ) -> ( U i^i TermCat ) =/= (/) ) |
| 27 | 9 | adantr | |- ( ( ph /\ X ( ~=c ` C ) Y ) -> C e. Cat ) |
| 28 | 14 | adantr | |- ( ( ph /\ X ( ~=c ` C ) Y ) -> X e. ( TermO ` C ) ) |
| 29 | simpr | |- ( ( ph /\ X ( ~=c ` C ) Y ) -> X ( ~=c ` C ) Y ) |
|
| 30 | 27 28 29 | termoeu2 | |- ( ( ph /\ X ( ~=c ` C ) Y ) -> Y e. ( TermO ` C ) ) |
| 31 | 1 26 30 | termcterm2 | |- ( ( ph /\ X ( ~=c ` C ) Y ) -> Y e. TermCat ) |
| 32 | 23 31 | impbida | |- ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) |