This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor is an isomorphism of categories only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek p. 34. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcisoi.c | |- C = ( CatCat ` U ) |
|
| catcisoi.r | |- R = ( Base ` X ) |
||
| catcisoi.s | |- S = ( Base ` Y ) |
||
| catcisoi.i | |- I = ( Iso ` C ) |
||
| catcisoi.f | |- ( ph -> F e. ( X I Y ) ) |
||
| Assertion | catcisoi | |- ( ph -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcisoi.c | |- C = ( CatCat ` U ) |
|
| 2 | catcisoi.r | |- R = ( Base ` X ) |
|
| 3 | catcisoi.s | |- S = ( Base ` Y ) |
|
| 4 | catcisoi.i | |- I = ( Iso ` C ) |
|
| 5 | catcisoi.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | 4 5 6 | isorcl2 | |- ( ph -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 8 | 7 | simpld | |- ( ph -> X e. ( Base ` C ) ) |
| 9 | 1 6 | elbasfv | |- ( X e. ( Base ` C ) -> U e. _V ) |
| 10 | 8 9 | syl | |- ( ph -> U e. _V ) |
| 11 | 7 | simprd | |- ( ph -> Y e. ( Base ` C ) ) |
| 12 | 1 6 2 3 10 8 11 4 | catciso | |- ( ph -> ( F e. ( X I Y ) <-> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) ) |
| 13 | 5 12 | mpbid | |- ( ph -> ( F e. ( ( X Full Y ) i^i ( X Faith Y ) ) /\ ( 1st ` F ) : R -1-1-onto-> S ) ) |