This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003) (Revised by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankidb | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankwflemb | |- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) |
|
| 2 | nfcv | |- F/_ x R1 |
|
| 3 | nfrab1 | |- F/_ x { x e. On | A e. ( R1 ` suc x ) } |
|
| 4 | 3 | nfint | |- F/_ x |^| { x e. On | A e. ( R1 ` suc x ) } |
| 5 | 4 | nfsuc | |- F/_ x suc |^| { x e. On | A e. ( R1 ` suc x ) } |
| 6 | 2 5 | nffv | |- F/_ x ( R1 ` suc |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| 7 | 6 | nfel2 | |- F/ x A e. ( R1 ` suc |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| 8 | suceq | |- ( x = |^| { x e. On | A e. ( R1 ` suc x ) } -> suc x = suc |^| { x e. On | A e. ( R1 ` suc x ) } ) |
|
| 9 | 8 | fveq2d | |- ( x = |^| { x e. On | A e. ( R1 ` suc x ) } -> ( R1 ` suc x ) = ( R1 ` suc |^| { x e. On | A e. ( R1 ` suc x ) } ) ) |
| 10 | 9 | eleq2d | |- ( x = |^| { x e. On | A e. ( R1 ` suc x ) } -> ( A e. ( R1 ` suc x ) <-> A e. ( R1 ` suc |^| { x e. On | A e. ( R1 ` suc x ) } ) ) ) |
| 11 | 7 10 | onminsb | |- ( E. x e. On A e. ( R1 ` suc x ) -> A e. ( R1 ` suc |^| { x e. On | A e. ( R1 ` suc x ) } ) ) |
| 12 | 1 11 | sylbi | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc |^| { x e. On | A e. ( R1 ` suc x ) } ) ) |
| 13 | rankvalb | |- ( A e. U. ( R1 " On ) -> ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } ) |
|
| 14 | suceq | |- ( ( rank ` A ) = |^| { x e. On | A e. ( R1 ` suc x ) } -> suc ( rank ` A ) = suc |^| { x e. On | A e. ( R1 ` suc x ) } ) |
|
| 15 | 13 14 | syl | |- ( A e. U. ( R1 " On ) -> suc ( rank ` A ) = suc |^| { x e. On | A e. ( R1 ` suc x ) } ) |
| 16 | 15 | fveq2d | |- ( A e. U. ( R1 " On ) -> ( R1 ` suc ( rank ` A ) ) = ( R1 ` suc |^| { x e. On | A e. ( R1 ` suc x ) } ) ) |
| 17 | 12 16 | eleqtrrd | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |