This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwwf | |- ( A e. U. ( R1 " On ) <-> ~P A e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankidb | |- ( A e. U. ( R1 " On ) -> A C_ ( R1 ` ( rank ` A ) ) ) |
|
| 2 | 1 | sspwd | |- ( A e. U. ( R1 " On ) -> ~P A C_ ~P ( R1 ` ( rank ` A ) ) ) |
| 3 | rankdmr1 | |- ( rank ` A ) e. dom R1 |
|
| 4 | r1sucg | |- ( ( rank ` A ) e. dom R1 -> ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) |
| 6 | 2 5 | sseqtrrdi | |- ( A e. U. ( R1 " On ) -> ~P A C_ ( R1 ` suc ( rank ` A ) ) ) |
| 7 | fvex | |- ( R1 ` suc ( rank ` A ) ) e. _V |
|
| 8 | 7 | elpw2 | |- ( ~P A e. ~P ( R1 ` suc ( rank ` A ) ) <-> ~P A C_ ( R1 ` suc ( rank ` A ) ) ) |
| 9 | 6 8 | sylibr | |- ( A e. U. ( R1 " On ) -> ~P A e. ~P ( R1 ` suc ( rank ` A ) ) ) |
| 10 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 11 | 10 | simpri | |- Lim dom R1 |
| 12 | limsuc | |- ( Lim dom R1 -> ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) ) |
|
| 13 | 11 12 | ax-mp | |- ( ( rank ` A ) e. dom R1 <-> suc ( rank ` A ) e. dom R1 ) |
| 14 | 3 13 | mpbi | |- suc ( rank ` A ) e. dom R1 |
| 15 | r1sucg | |- ( suc ( rank ` A ) e. dom R1 -> ( R1 ` suc suc ( rank ` A ) ) = ~P ( R1 ` suc ( rank ` A ) ) ) |
|
| 16 | 14 15 | ax-mp | |- ( R1 ` suc suc ( rank ` A ) ) = ~P ( R1 ` suc ( rank ` A ) ) |
| 17 | 9 16 | eleqtrrdi | |- ( A e. U. ( R1 " On ) -> ~P A e. ( R1 ` suc suc ( rank ` A ) ) ) |
| 18 | r1elwf | |- ( ~P A e. ( R1 ` suc suc ( rank ` A ) ) -> ~P A e. U. ( R1 " On ) ) |
|
| 19 | 17 18 | syl | |- ( A e. U. ( R1 " On ) -> ~P A e. U. ( R1 " On ) ) |
| 20 | r1elssi | |- ( ~P A e. U. ( R1 " On ) -> ~P A C_ U. ( R1 " On ) ) |
|
| 21 | pwexr | |- ( ~P A e. U. ( R1 " On ) -> A e. _V ) |
|
| 22 | pwidg | |- ( A e. _V -> A e. ~P A ) |
|
| 23 | 21 22 | syl | |- ( ~P A e. U. ( R1 " On ) -> A e. ~P A ) |
| 24 | 20 23 | sseldd | |- ( ~P A e. U. ( R1 " On ) -> A e. U. ( R1 " On ) ) |
| 25 | 19 24 | impbii | |- ( A e. U. ( R1 " On ) <-> ~P A e. U. ( R1 " On ) ) |