This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rankr1c . (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1clem | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1ag | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
|
| 2 | 1 | notbid | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> -. ( rank ` A ) e. B ) ) |
| 3 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 4 | 3 | simpri | |- Lim dom R1 |
| 5 | limord | |- ( Lim dom R1 -> Ord dom R1 ) |
|
| 6 | 4 5 | ax-mp | |- Ord dom R1 |
| 7 | ordelon | |- ( ( Ord dom R1 /\ B e. dom R1 ) -> B e. On ) |
|
| 8 | 6 7 | mpan | |- ( B e. dom R1 -> B e. On ) |
| 9 | 8 | adantl | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> B e. On ) |
| 10 | rankon | |- ( rank ` A ) e. On |
|
| 11 | ontri1 | |- ( ( B e. On /\ ( rank ` A ) e. On ) -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) ) |
|
| 12 | 9 10 11 | sylancl | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( B C_ ( rank ` A ) <-> -. ( rank ` A ) e. B ) ) |
| 13 | 2 12 | bitr4d | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( -. A e. ( R1 ` B ) <-> B C_ ( rank ` A ) ) ) |