This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrisubgrgrim.i | |- I = ( iEdg ` G ) |
|
| clnbgrisubgrgrim.j | |- J = ( iEdg ` H ) |
||
| clnbgrisubgrgrim.n | |- N = ( G ClNeighbVtx X ) |
||
| clnbgrisubgrgrim.m | |- M = ( H ClNeighbVtx Y ) |
||
| clnbgrisubgrgrim.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
||
| clnbgrisubgrgrim.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
||
| Assertion | clnbgrisubgrgrim | |- ( ( G e. U /\ H e. T ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrisubgrgrim.i | |- I = ( iEdg ` G ) |
|
| 2 | clnbgrisubgrgrim.j | |- J = ( iEdg ` H ) |
|
| 3 | clnbgrisubgrgrim.n | |- N = ( G ClNeighbVtx X ) |
|
| 4 | clnbgrisubgrgrim.m | |- M = ( H ClNeighbVtx Y ) |
|
| 5 | clnbgrisubgrgrim.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
|
| 6 | clnbgrisubgrgrim.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
|
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | 7 | clnbgrssvtx | |- ( G ClNeighbVtx X ) C_ ( Vtx ` G ) |
| 9 | 3 8 | eqsstri | |- N C_ ( Vtx ` G ) |
| 10 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 11 | 10 | clnbgrssvtx | |- ( H ClNeighbVtx Y ) C_ ( Vtx ` H ) |
| 12 | 4 11 | eqsstri | |- M C_ ( Vtx ` H ) |
| 13 | 7 10 1 2 5 6 | isubgrgrim | |- ( ( ( G e. U /\ H e. T ) /\ ( N C_ ( Vtx ` G ) /\ M C_ ( Vtx ` H ) ) ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| 14 | 9 12 13 | mpanr12 | |- ( ( G e. U /\ H e. T ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr M ) <-> E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |