This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uhgrimisgrgric . (Contributed by AV, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrimisgrgriclem | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) <-> E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( k = ( `' I ` J ) -> ( G ` k ) = ( G ` ( `' I ` J ) ) ) |
|
| 2 | 1 | sseq1d | |- ( k = ( `' I ` J ) -> ( ( G ` k ) C_ N <-> ( G ` ( `' I ` J ) ) C_ N ) ) |
| 3 | fveqeq2 | |- ( k = ( `' I ` J ) -> ( ( I ` k ) = J <-> ( I ` ( `' I ` J ) ) = J ) ) |
|
| 4 | 2 3 | anbi12d | |- ( k = ( `' I ` J ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) <-> ( ( G ` ( `' I ` J ) ) C_ N /\ ( I ` ( `' I ` J ) ) = J ) ) ) |
| 5 | simpr | |- ( ( N C_ V /\ I : A -1-1-onto-> B ) -> I : A -1-1-onto-> B ) |
|
| 6 | 5 | 3ad2ant2 | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> I : A -1-1-onto-> B ) |
| 7 | simpl | |- ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> J e. B ) |
|
| 8 | f1ocnvdm | |- ( ( I : A -1-1-onto-> B /\ J e. B ) -> ( `' I ` J ) e. A ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( `' I ` J ) e. A ) |
| 10 | 2fveq3 | |- ( i = ( `' I ` J ) -> ( H ` ( I ` i ) ) = ( H ` ( I ` ( `' I ` J ) ) ) ) |
|
| 11 | fveq2 | |- ( i = ( `' I ` J ) -> ( G ` i ) = ( G ` ( `' I ` J ) ) ) |
|
| 12 | 11 | imaeq2d | |- ( i = ( `' I ` J ) -> ( F " ( G ` i ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) |
| 13 | 10 12 | eqeq12d | |- ( i = ( `' I ` J ) -> ( ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) <-> ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
| 14 | 13 | rspcv | |- ( ( `' I ` J ) e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
| 15 | 14 | adantl | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
| 16 | 7 | adantl | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> J e. B ) |
| 17 | f1ocnvfv2 | |- ( ( I : A -1-1-onto-> B /\ J e. B ) -> ( I ` ( `' I ` J ) ) = J ) |
|
| 18 | 5 16 17 | syl2anr | |- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( I ` ( `' I ` J ) ) = J ) |
| 19 | 18 | fveqeq2d | |- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) <-> ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) ) |
| 20 | sseq1 | |- ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( H ` J ) C_ ( F " N ) <-> ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) ) ) |
|
| 21 | 20 | adantl | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) -> ( ( H ` J ) C_ ( F " N ) <-> ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) ) ) |
| 22 | f1of1 | |- ( F : V -1-1-onto-> W -> F : V -1-1-> W ) |
|
| 23 | 22 | adantr | |- ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) -> F : V -1-1-> W ) |
| 24 | 23 | adantr | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> F : V -1-1-> W ) |
| 25 | 24 | 3ad2ant1 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> F : V -1-1-> W ) |
| 26 | simp1lr | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> G : A --> ~P V ) |
|
| 27 | simp1r | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( `' I ` J ) e. A ) |
|
| 28 | 26 27 | ffvelcdmd | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( G ` ( `' I ` J ) ) e. ~P V ) |
| 29 | 28 | elpwid | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( G ` ( `' I ` J ) ) C_ V ) |
| 30 | simpl | |- ( ( N C_ V /\ I : A -1-1-onto-> B ) -> N C_ V ) |
|
| 31 | 30 | 3ad2ant3 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> N C_ V ) |
| 32 | f1imass | |- ( ( F : V -1-1-> W /\ ( ( G ` ( `' I ` J ) ) C_ V /\ N C_ V ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) <-> ( G ` ( `' I ` J ) ) C_ N ) ) |
|
| 33 | 25 29 31 32 | syl12anc | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) <-> ( G ` ( `' I ` J ) ) C_ N ) ) |
| 34 | 33 | biimpd | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ J e. B /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( G ` ( `' I ` J ) ) C_ N ) ) |
| 35 | 34 | 3exp | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( J e. B -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
| 36 | 35 | com24 | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
| 37 | 36 | adantr | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) -> ( ( F " ( G ` ( `' I ` J ) ) ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
| 38 | 21 37 | sylbid | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) ) -> ( ( H ` J ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
| 39 | 38 | ex | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( H ` J ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( J e. B -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
| 40 | 39 | com25 | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( J e. B -> ( ( H ` J ) C_ ( F " N ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
| 41 | 40 | imp42 | |- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( H ` J ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) |
| 42 | 19 41 | sylbid | |- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) |
| 43 | 42 | ex | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) |
| 44 | 43 | com23 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) |
| 45 | 44 | ex | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
| 46 | 45 | com23 | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( ( H ` ( I ` ( `' I ` J ) ) ) = ( F " ( G ` ( `' I ` J ) ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
| 47 | 15 46 | syld | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( `' I ` J ) e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) |
| 48 | 47 | ex | |- ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) -> ( ( `' I ` J ) e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
| 49 | 48 | com25 | |- ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) -> ( ( N C_ V /\ I : A -1-1-onto-> B ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> ( ( `' I ` J ) e. A -> ( G ` ( `' I ` J ) ) C_ N ) ) ) ) ) |
| 50 | 49 | 3imp1 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( `' I ` J ) e. A -> ( G ` ( `' I ` J ) ) C_ N ) ) |
| 51 | 9 50 | mpd | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( G ` ( `' I ` J ) ) C_ N ) |
| 52 | 6 7 17 | syl2an | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( I ` ( `' I ` J ) ) = J ) |
| 53 | 51 52 | jca | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> ( ( G ` ( `' I ` J ) ) C_ N /\ ( I ` ( `' I ` J ) ) = J ) ) |
| 54 | 4 9 53 | rspcedvdw | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) -> E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) |
| 55 | 54 | ex | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) -> E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) ) |
| 56 | f1of | |- ( I : A -1-1-onto-> B -> I : A --> B ) |
|
| 57 | 56 | adantl | |- ( ( N C_ V /\ I : A -1-1-onto-> B ) -> I : A --> B ) |
| 58 | 57 | 3ad2ant2 | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> I : A --> B ) |
| 59 | 58 | 3ad2ant1 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> I : A --> B ) |
| 60 | simp2 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> k e. A ) |
|
| 61 | 59 60 | ffvelcdmd | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( I ` k ) e. B ) |
| 62 | 2fveq3 | |- ( i = k -> ( H ` ( I ` i ) ) = ( H ` ( I ` k ) ) ) |
|
| 63 | fveq2 | |- ( i = k -> ( G ` i ) = ( G ` k ) ) |
|
| 64 | 63 | imaeq2d | |- ( i = k -> ( F " ( G ` i ) ) = ( F " ( G ` k ) ) ) |
| 65 | 62 64 | eqeq12d | |- ( i = k -> ( ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) <-> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) ) |
| 66 | 65 | rspcv | |- ( k e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) ) |
| 67 | 66 | adantl | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) ) |
| 68 | simp3 | |- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) /\ ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) -> ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) |
|
| 69 | imass2 | |- ( ( G ` k ) C_ N -> ( F " ( G ` k ) ) C_ ( F " N ) ) |
|
| 70 | 69 | adantr | |- ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( F " ( G ` k ) ) C_ ( F " N ) ) |
| 71 | 70 | 3ad2ant2 | |- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) /\ ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) -> ( F " ( G ` k ) ) C_ ( F " N ) ) |
| 72 | 68 71 | eqsstrd | |- ( ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) /\ ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) |
| 73 | 72 | 3exp | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
| 74 | 73 | com23 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( ( H ` ( I ` k ) ) = ( F " ( G ` k ) ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
| 75 | 67 74 | syld | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) /\ k e. A ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
| 76 | 75 | ex | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( k e. A -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) ) |
| 77 | 76 | com23 | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) ) -> ( A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) -> ( k e. A -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) ) |
| 78 | 77 | 3impia | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( k e. A -> ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) ) ) |
| 79 | 78 | 3imp | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( H ` ( I ` k ) ) C_ ( F " N ) ) |
| 80 | eleq1 | |- ( ( I ` k ) = J -> ( ( I ` k ) e. B <-> J e. B ) ) |
|
| 81 | fveq2 | |- ( ( I ` k ) = J -> ( H ` ( I ` k ) ) = ( H ` J ) ) |
|
| 82 | 81 | sseq1d | |- ( ( I ` k ) = J -> ( ( H ` ( I ` k ) ) C_ ( F " N ) <-> ( H ` J ) C_ ( F " N ) ) ) |
| 83 | 80 82 | anbi12d | |- ( ( I ` k ) = J -> ( ( ( I ` k ) e. B /\ ( H ` ( I ` k ) ) C_ ( F " N ) ) <-> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
| 84 | 83 | adantl | |- ( ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( ( ( I ` k ) e. B /\ ( H ` ( I ` k ) ) C_ ( F " N ) ) <-> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
| 85 | 84 | 3ad2ant3 | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( ( ( I ` k ) e. B /\ ( H ` ( I ` k ) ) C_ ( F " N ) ) <-> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
| 86 | 61 79 85 | mpbi2and | |- ( ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) /\ k e. A /\ ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) -> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) |
| 87 | 86 | rexlimdv3a | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) -> ( J e. B /\ ( H ` J ) C_ ( F " N ) ) ) ) |
| 88 | 55 87 | impbid | |- ( ( ( F : V -1-1-onto-> W /\ G : A --> ~P V ) /\ ( N C_ V /\ I : A -1-1-onto-> B ) /\ A. i e. A ( H ` ( I ` i ) ) = ( F " ( G ` i ) ) ) -> ( ( J e. B /\ ( H ` J ) C_ ( F " N ) ) <-> E. k e. A ( ( G ` k ) C_ N /\ ( I ` k ) = J ) ) ) |