This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grimprop.v | |- V = ( Vtx ` G ) |
|
| grimprop.w | |- W = ( Vtx ` H ) |
||
| grimprop.e | |- E = ( iEdg ` G ) |
||
| grimprop.d | |- D = ( iEdg ` H ) |
||
| Assertion | grimprop | |- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimprop.v | |- V = ( Vtx ` G ) |
|
| 2 | grimprop.w | |- W = ( Vtx ` H ) |
|
| 3 | grimprop.e | |- E = ( iEdg ` G ) |
|
| 4 | grimprop.d | |- D = ( iEdg ` H ) |
|
| 5 | grimdmrel | |- Rel dom GraphIso |
|
| 6 | 5 | ovrcl | |- ( F e. ( G GraphIso H ) -> ( G e. _V /\ H e. _V ) ) |
| 7 | 6 | simpld | |- ( F e. ( G GraphIso H ) -> G e. _V ) |
| 8 | 6 | simprd | |- ( F e. ( G GraphIso H ) -> H e. _V ) |
| 9 | id | |- ( F e. ( G GraphIso H ) -> F e. ( G GraphIso H ) ) |
|
| 10 | 7 8 9 | 3jca | |- ( F e. ( G GraphIso H ) -> ( G e. _V /\ H e. _V /\ F e. ( G GraphIso H ) ) ) |
| 11 | 1 2 3 4 | isgrim | |- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphIso H ) ) -> ( F e. ( G GraphIso H ) <-> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) ) |
| 12 | 11 | biimpd | |- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphIso H ) ) -> ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) ) |
| 13 | 10 12 | mpcom | |- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) |