This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | txval.1 | |- B = ran ( x e. R , y e. S |-> ( x X. y ) ) |
|
| Assertion | txval | |- ( ( R e. V /\ S e. W ) -> ( R tX S ) = ( topGen ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | |- B = ran ( x e. R , y e. S |-> ( x X. y ) ) |
|
| 2 | elex | |- ( R e. V -> R e. _V ) |
|
| 3 | elex | |- ( S e. W -> S e. _V ) |
|
| 4 | mpoeq12 | |- ( ( r = R /\ s = S ) -> ( x e. r , y e. s |-> ( x X. y ) ) = ( x e. R , y e. S |-> ( x X. y ) ) ) |
|
| 5 | 4 | rneqd | |- ( ( r = R /\ s = S ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) = ran ( x e. R , y e. S |-> ( x X. y ) ) ) |
| 6 | 5 1 | eqtr4di | |- ( ( r = R /\ s = S ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) = B ) |
| 7 | 6 | fveq2d | |- ( ( r = R /\ s = S ) -> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) = ( topGen ` B ) ) |
| 8 | df-tx | |- tX = ( r e. _V , s e. _V |-> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
|
| 9 | fvex | |- ( topGen ` B ) e. _V |
|
| 10 | 7 8 9 | ovmpoa | |- ( ( R e. _V /\ S e. _V ) -> ( R tX S ) = ( topGen ` B ) ) |
| 11 | 2 3 10 | syl2an | |- ( ( R e. V /\ S e. W ) -> ( R tX S ) = ( topGen ` B ) ) |