This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | txval.1 | |- B = ran ( x e. R , y e. S |-> ( x X. y ) ) |
|
| Assertion | txbasex | |- ( ( R e. V /\ S e. W ) -> B e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | |- B = ran ( x e. R , y e. S |-> ( x X. y ) ) |
|
| 2 | eqid | |- U. R = U. R |
|
| 3 | eqid | |- U. S = U. S |
|
| 4 | 1 2 3 | txuni2 | |- ( U. R X. U. S ) = U. B |
| 5 | uniexg | |- ( R e. V -> U. R e. _V ) |
|
| 6 | uniexg | |- ( S e. W -> U. S e. _V ) |
|
| 7 | xpexg | |- ( ( U. R e. _V /\ U. S e. _V ) -> ( U. R X. U. S ) e. _V ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( R e. V /\ S e. W ) -> ( U. R X. U. S ) e. _V ) |
| 9 | 4 8 | eqeltrrid | |- ( ( R e. V /\ S e. W ) -> U. B e. _V ) |
| 10 | uniexb | |- ( B e. _V <-> U. B e. _V ) |
|
| 11 | 9 10 | sylibr | |- ( ( R e. V /\ S e. W ) -> B e. _V ) |