This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for txindis . (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txindislem | |- ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp | |- ( (/) X. ( _I ` B ) ) = (/) |
|
| 2 | fvprc | |- ( -. A e. _V -> ( _I ` A ) = (/) ) |
|
| 3 | 2 | xpeq1d | |- ( -. A e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( (/) X. ( _I ` B ) ) ) |
| 4 | simpr | |- ( ( -. A e. _V /\ B = (/) ) -> B = (/) ) |
|
| 5 | 4 | xpeq2d | |- ( ( -. A e. _V /\ B = (/) ) -> ( A X. B ) = ( A X. (/) ) ) |
| 6 | xp0 | |- ( A X. (/) ) = (/) |
|
| 7 | 5 6 | eqtrdi | |- ( ( -. A e. _V /\ B = (/) ) -> ( A X. B ) = (/) ) |
| 8 | 7 | fveq2d | |- ( ( -. A e. _V /\ B = (/) ) -> ( _I ` ( A X. B ) ) = ( _I ` (/) ) ) |
| 9 | 0ex | |- (/) e. _V |
|
| 10 | fvi | |- ( (/) e. _V -> ( _I ` (/) ) = (/) ) |
|
| 11 | 9 10 | ax-mp | |- ( _I ` (/) ) = (/) |
| 12 | 8 11 | eqtrdi | |- ( ( -. A e. _V /\ B = (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
| 13 | dmexg | |- ( ( A X. B ) e. _V -> dom ( A X. B ) e. _V ) |
|
| 14 | dmxp | |- ( B =/= (/) -> dom ( A X. B ) = A ) |
|
| 15 | 14 | eleq1d | |- ( B =/= (/) -> ( dom ( A X. B ) e. _V <-> A e. _V ) ) |
| 16 | 13 15 | imbitrid | |- ( B =/= (/) -> ( ( A X. B ) e. _V -> A e. _V ) ) |
| 17 | 16 | con3d | |- ( B =/= (/) -> ( -. A e. _V -> -. ( A X. B ) e. _V ) ) |
| 18 | 17 | impcom | |- ( ( -. A e. _V /\ B =/= (/) ) -> -. ( A X. B ) e. _V ) |
| 19 | fvprc | |- ( -. ( A X. B ) e. _V -> ( _I ` ( A X. B ) ) = (/) ) |
|
| 20 | 18 19 | syl | |- ( ( -. A e. _V /\ B =/= (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
| 21 | 12 20 | pm2.61dane | |- ( -. A e. _V -> ( _I ` ( A X. B ) ) = (/) ) |
| 22 | 1 3 21 | 3eqtr4a | |- ( -. A e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) |
| 23 | xp0 | |- ( ( _I ` A ) X. (/) ) = (/) |
|
| 24 | fvprc | |- ( -. B e. _V -> ( _I ` B ) = (/) ) |
|
| 25 | 24 | xpeq2d | |- ( -. B e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( ( _I ` A ) X. (/) ) ) |
| 26 | simpr | |- ( ( -. B e. _V /\ A = (/) ) -> A = (/) ) |
|
| 27 | 26 | xpeq1d | |- ( ( -. B e. _V /\ A = (/) ) -> ( A X. B ) = ( (/) X. B ) ) |
| 28 | 0xp | |- ( (/) X. B ) = (/) |
|
| 29 | 27 28 | eqtrdi | |- ( ( -. B e. _V /\ A = (/) ) -> ( A X. B ) = (/) ) |
| 30 | 29 | fveq2d | |- ( ( -. B e. _V /\ A = (/) ) -> ( _I ` ( A X. B ) ) = ( _I ` (/) ) ) |
| 31 | 30 11 | eqtrdi | |- ( ( -. B e. _V /\ A = (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
| 32 | rnexg | |- ( ( A X. B ) e. _V -> ran ( A X. B ) e. _V ) |
|
| 33 | rnxp | |- ( A =/= (/) -> ran ( A X. B ) = B ) |
|
| 34 | 33 | eleq1d | |- ( A =/= (/) -> ( ran ( A X. B ) e. _V <-> B e. _V ) ) |
| 35 | 32 34 | imbitrid | |- ( A =/= (/) -> ( ( A X. B ) e. _V -> B e. _V ) ) |
| 36 | 35 | con3d | |- ( A =/= (/) -> ( -. B e. _V -> -. ( A X. B ) e. _V ) ) |
| 37 | 36 | impcom | |- ( ( -. B e. _V /\ A =/= (/) ) -> -. ( A X. B ) e. _V ) |
| 38 | 37 19 | syl | |- ( ( -. B e. _V /\ A =/= (/) ) -> ( _I ` ( A X. B ) ) = (/) ) |
| 39 | 31 38 | pm2.61dane | |- ( -. B e. _V -> ( _I ` ( A X. B ) ) = (/) ) |
| 40 | 23 25 39 | 3eqtr4a | |- ( -. B e. _V -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) |
| 41 | fvi | |- ( A e. _V -> ( _I ` A ) = A ) |
|
| 42 | fvi | |- ( B e. _V -> ( _I ` B ) = B ) |
|
| 43 | xpeq12 | |- ( ( ( _I ` A ) = A /\ ( _I ` B ) = B ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( A X. B ) ) |
|
| 44 | 41 42 43 | syl2an | |- ( ( A e. _V /\ B e. _V ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( A X. B ) ) |
| 45 | xpexg | |- ( ( A e. _V /\ B e. _V ) -> ( A X. B ) e. _V ) |
|
| 46 | fvi | |- ( ( A X. B ) e. _V -> ( _I ` ( A X. B ) ) = ( A X. B ) ) |
|
| 47 | 45 46 | syl | |- ( ( A e. _V /\ B e. _V ) -> ( _I ` ( A X. B ) ) = ( A X. B ) ) |
| 48 | 44 47 | eqtr4d | |- ( ( A e. _V /\ B e. _V ) -> ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) ) |
| 49 | 22 40 48 | ecase | |- ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) |